Skip to main content
Log in

An aperiodic feature representation for gait recognition in cross-view scenarios for unconstrained biometrics

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The state-of-the-art gait recognition algorithms require a gait cycle estimation before the feature extraction and are classified as periodic algorithms. Their effectiveness substantially decreases due to errors in detecting gait cycles, which are likely to occur in data acquired in non-controlled conditions. Hence, the main contributions of this paper are: (1) propose an aperiodic gait recognition strategy, where features are extracted without the concept of gait cycle, in case of multi-view scenario; (2) propose the fusion of the different feature subspaces of aperiodic feature representations at score level in cross-view scenarios. The experiments were performed with widely known CASIA Gait database B, which enabled us to draw the following major conclusions, (1) for multi-view scenarios, features extracted from gait sequences of varying length have as much discriminating power as traditional periodic features; (2) for cross-view scenarios, we observed an average improvement of 22 % over the error rates of state-of-the-art algorithms, due to the proposed fusion scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bashir K, Xiang T, Gong S (2010) Cross-view gait recognition using correlation strength. In: Proceedings of the British Machine Vision Conference, pp 109.1–109.11. BMVA Press. doi:10.5244/C.24.109

  2. BenAbdelkader C, Cutler R, Davis L (2002) Stride and cadence as a biometric in automatic person identification and verification. In: Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 2002, pp 372–377. doi:10.1109/AFGR.2002.1004182

  3. Bouchrika I, Goffredo M, Carter J, Nixon M (2009) Covariate analysis for view-point independent gait recognition. In: Tistarelli M, Nixon M (eds) Advances in Biometrics, Lecture Notes in Computer Science, vol 5558, pp 990–999. Springer, Berlin Heidelberg. doi:10.1007/978-3-642-01793-3_100

  4. Boulgouris N, Chi Z (2007) Gait recognition using radon transform and linear discriminant analysis. IEEE Trans Image Process 16(3):731–740. doi:10.1109/TIP.2007.891157

    Article  MathSciNet  Google Scholar 

  5. Collins R, Gross R, Shi J (2002) Silhouette-based human identification from body shape and gait. In: Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 2002, pp 366–371. doi:10.1109/AFGR.2002.1004181

  6. Guan Y, Li CT, Hu Y (2012) An adaptive system for gait recognition in multi-view environments. In: Proceedings of the on Multimedia and security, MM&Sec ’12, pp 139–144

  7. Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322. doi:10.1109/TPAMI.2006.38

    Article  Google Scholar 

  8. Han J, Bhanu B, Roy-Chowdhury A (2005) A study on view-insensitive gait recognition. In: IEEE International Conference on Image Processing, 2005. ICIP 2005, vol 3, pp III-297-300. doi:10.1109/ICIP.2005.1530387

  9. Hu M, Wang Y, Zhang Z, Zhang Z (2011) Multi-view multi-stance gait identification. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp 541–544. doi:10.1109/ICIP.2011.6116402

  10. Iosifidis A, Tefas A, Pitas I (2012) Activity-based person identification using fuzzy representation and discriminant learning. IEEE Trans Inf Forensics Secur 7(2):530–542. doi:10.1109/TIFS.2011.2175921

    Article  Google Scholar 

  11. Kale A, Chowdhury A, Chellappa R (2003) Towards a view invariant gait recognition algorithm. In: Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, 2003, pp 143–150. doi:10.1109/AVSS.2003.1217914

  12. Kusakunniran W, Wu Q, Li H, Zhang J (2009) Multiple views gait recognition using view transformation model based on optimized gait energy image. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp 1058–1064. doi:10.1109/ICCVW.2009.5457587

  13. Kusakunniran W, Wu Q, Zhang J, Li H (2010) Support vector regression for multi-view gait recognition based on local motion feature selection. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 974–981. doi:10.1109/CVPR.2010.5540113

  14. Kusakunniran W, Wu Q, Zhang J, Li H (2012) Cross-view and multi-view gait recognitions based on view transformation model using multi-layer perceptron. Pattern Recognition Letters 33(7), 882–889. doi:10.1016/j.patrec.2011.04.014. http://www.sciencedirect.com/science/article/pii/S0167865511001267. Special Issue on Awards from ICPR

  15. Kusakunniran W, Wu Q, Zhang J, Li H (2012) Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans Circuits Syst Video Technol 22(6):966–980

    Article  Google Scholar 

  16. Liu N, Lu J, Yang G, Tan YP (2013) Robust gait recognition via discriminative set matching. J Vis Commun Image Represent 24(4), 439–447. doi:10.1016/j.jvcir.2013.02.002. http://www.sciencedirect.com/science/article/pii/S1047320313000229

  17. Liu N, Tan YP (2010) View invariant gait recognition. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 1410–1413. doi:10.1109/ICASSP.2010.5495466

  18. Makihara Y, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y (2006) Gait recognition using a view transformation model in the frequency domain. In: Leonardis A, Bischof H, Pinz A (eds) Computer Vision ECCV 2006, Lecture Notes in Computer Science, vol 3953, pp 151–163. Springer, Berlin Heidelberg. doi:10.1007/11744078_12

  19. Savvides M, Ricanek K Jr, Woodard DL, Dozier G (2010) Unconstrained biometric identification: Emerging technologies. Computer 43, 56–62. doi:10.1109/MC.2010.55

  20. Wang L, Tan T, Ning H, Hu W (2003) Silhouette analysis-based gait recognition for human identification. IEEE Trans Pattern Anal Mach Intell 25(12):1505–1518. doi:10.1109/TPAMI.2003.1251144

    Article  Google Scholar 

  21. Zheng S, Zhang J, Huang K, He R, Tan T (2011) Robust view transformation model for gait recognition. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp 2073–2076. doi:10.1109/ICIP.2011.6115889

Download references

Acknowledgments

This work was supported by FCT project UID/EEA/50008/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrashekhar Padole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padole, C., Proença, H. An aperiodic feature representation for gait recognition in cross-view scenarios for unconstrained biometrics. Pattern Anal Applic 20, 73–86 (2017). https://doi.org/10.1007/s10044-015-0468-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0468-0

Keywords

Navigation