Skip to main content

Advertisement

Log in

A novel binary feature descriptor to discriminate normal and abnormal chest CT images using dissimilarity measures

  • Short paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new feature descriptor local diagonal Laplacian pattern (LDLP) is proposed to separate the normal and emphysematous lesions in computed tomographic (CT) images containing pulmonary emphysema. LDLP employs a diagonal element approach in which the relationship of the centre pixel with the diagonal elements is obtained using the second-order derivatives (Laplacian). This results in a low-dimensional feature vector with richer information about the local structure. In the proposed framework, the feature histograms of chest CT image slices of EMPHYSEMA database are first determined. Further, the distance between the features of normal and emphysematous tissues is measured and analysed using ANOVA statistical method. Furthermore, a four-class classification is performed using an artificial neural network classifier. The classification performance of the proposed LDLP approach is compared with the prominent methods like local binary pattern, local tetra pattern, and local diagonal extrema pattern. The observational results show that the LDLP outperforms the existing binary feature descriptors in the segregation and classification of healthy and abnormal chest CT images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Fiel B (1996) Chronic obstructive pulmonary disease. Drugs 52(2):55–61

    Article  Google Scholar 

  2. Webb WR, Muller NL, Ndaidich DP (2014) High-resolution CT of the lung. Lippincott Williams Wilkins, Berlin

    Google Scholar 

  3. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91–108

    Article  Google Scholar 

  4. Nayak J, Bhat PS, Acharya UR, Faust O, Min LC (2009) Computer based identification of cataract and cataract surgery efficacy using optical image. J Mech Med Biol 9:589–607

    Article  Google Scholar 

  5. Herrmann K, Czernin J, Wolin EM, Gupta P, Barrio M, Gutierrez A, Schiepers C, Mosessian S, Phelps ME, Auerbach SA (2015) Impact of \( ^{68} \)Ga-DOTATATE PET/CT on the management of neuroendocrine tumors: the referring Physician’s perspective. J Nucl Med 56(1):70–75

    Article  Google Scholar 

  6. Ojala T, Pietikäinen M, Harwood D (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: 12th International conference on pattern recognition, pp 582–585

  7. Murala S, Maheswari RP, Balasubramanian R (2012) Directional binary wavelet patterns for biomedical image indexing and retrieval. J Med Syst 36(5):2865–2879

    Article  Google Scholar 

  8. Murala S, Wu QMJ (2013) Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119:399–412

    Article  Google Scholar 

  9. Qi X, Shen L, Zhao G, Li Q, Pietikänen M (2015) Globally rotation invariant multi-scale co-occurrence local binary pattern. Image Vis Comput 43:16–26

    Article  Google Scholar 

  10. Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49:117–125

    Article  Google Scholar 

  11. Sørensen L, Shaker SB, de Bruijne M (2010) Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging 29(2):559–569

    Article  Google Scholar 

  12. Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process Lett 22(9):1215–1219

    Article  Google Scholar 

  13. Chen Y-T, Chen MC (2011) Using Chi-square statistics to measure similarities for text categorization. Expert Syst Appl 38(4):3085–3090

    Article  Google Scholar 

  14. Gaidhane VH, Hote YV, Singh V (2014) An efficient approach for face recognition based on common eigenvalues. Pattern Recogn 47:1869–1879

    Article  Google Scholar 

  15. Liberti L, Lavor C, Maculan N, Mucherino A (2014) Euclidean distance geometry and applications. SIAM Rev 56(4):3–69

    Article  MathSciNet  MATH  Google Scholar 

  16. Murala S, Maheswari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with higher-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  MATH  Google Scholar 

  18. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Procss 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  19. Gupta R, Patil H, Mittal A (2010) Robust order-based methods for feature description. In: IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 334–341

  20. Haralick RM, Shapiro LG (2010) Computer and robot vision. Addison-Wesley Longman Publishing Co., Inc, Boston

    Google Scholar 

  21. Gaidhane VH, Hote YV, Singh V (2017) An efficient similarity measure approach for PCB surface defect detection. Pattern Anal Appl 21(1):277–289

    Article  MathSciNet  Google Scholar 

  22. Computed Tomography Emphysema Database. Accessible online. http://image.diku.dk/emphysema_database. Accessed 01 Oct 2016

  23. Sørensen L, Shaker SB, de Bruijne M (2008) Texture classification in lung CT using local binary patterns. In: 11th International Conference, New York, NY, USA, Sept 6–10

  24. Prasad M, Sowmya A, Wilson P (2009) Multi-level classification of emphysema in HRCT lung images. Pattern Anal Appl 12(1):9–20

    Article  MathSciNet  Google Scholar 

  25. He Y, Sang N, Gao C (2013) Multi-structure local binary patterns for texture classification. Pattern Anal Appl 16(4):595–607

    Article  MathSciNet  Google Scholar 

  26. Nava R, Boris ER, Cristobal G, Estepar RSJ (2014) Extended Gabor approach applied to classification of emphysematous patterns in computed tomography. Med Biol Eng Comput 52(4):393–403

    Article  Google Scholar 

  27. Esser SK, Appuswamy R, Merolla P, Arthur JV, Modha DS (2015) Backpropagation for energy -efficient neuromorphic computing. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in information processing systems, vol 28. Curran Associates, Inc., pp 1117–1125

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Reddy Yelampalli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yelampalli, P.K.R., Nayak, J. & Gaidhane, V.H. A novel binary feature descriptor to discriminate normal and abnormal chest CT images using dissimilarity measures. Pattern Anal Applic 22, 1517–1526 (2019). https://doi.org/10.1007/s10044-018-00771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-018-00771-2

Keywords

Navigation