Skip to main content
Log in

A three-stage shearlet-based algorithm for vessel segmentation in medical imaging

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Dictionaries are known tools used in different branches of image processing like edge detection, inpainting and, etc. Segmentation is the task of extracting an object as the part of a particular image. The common drawback of different segmentation methods is that they perform the extraction task incompletely. Tasks like edge detection, denoising and smoothing, as the parts of segmentation, can be done through applying the dictionaries. In this paper, we propose three new contrast stretching function. Based on one of the stretching functions and shearlets as a dictionary, we improved the previous version of a method that has been used in binary segmentation for magnetic resonance angiography images (MRI). We also introduce a three-stage binary image segmentation algorithm for vessel segmentation in MRI images. There are some disadvantages in recent proposed methods when dealing with extracting vessels of medical images. Our algorithm does the task with a more accurate extraction in detecting vessels having low intensity and weak edges in MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Tight-frame-based algorithm.

  2. TFA with Eigenvector.

  3. Shearlet-based algorithm.

References

  1. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  Google Scholar 

  2. Chapman BE, Stapelton JO, Parker DL (2004) Intracranial vessel segmentation from time-of-flight mra using pre-processing of the mip z-buffer: accuracy of the zbs algorithm. Med Image Anal 8(2):113–126

    Article  Google Scholar 

  3. Chen J, Amini AA (2004) Quantifying 3-d vascular structures in mra images using hybrid pde and geometric deformable models. IEEE Trans Med Imaging 23(10):1251–1262

    Article  Google Scholar 

  4. Dong B, Chien A, Shen Z (2010) Frame based segmentation for medical images. Commun Math Sci 32(4):1724–1739

    MATH  Google Scholar 

  5. Franchini E, Morigi S, Sgallari F (2008) Segmentation of 3d tubular structures by a pde-based anisotropic diffusion model. In: MMCS. Springer, pp 224–241

  6. Gooya A, Liao H, Matsumiya K, Masamune K, Masutani Y, Dohi T (2008) A variational method for geometric regularization of vascular segmentation in medical images. IEEE Trans Image Process 17(8):1295–1312

    Article  MathSciNet  Google Scholar 

  7. Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y (2000) Model-based detection of tubular structures in 3d images. Comput Vis Image Underst 80(2):130–171

    Article  Google Scholar 

  8. Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Nabavi A, Westin C-F (2001) Curves: curve evolution for vessel segmentation. Med Image Anal 5(3):195–206

    Article  Google Scholar 

  9. Sum K, Cheung PY (2008) Vessel extraction under non-uniform illumination: a level set approach. IEEE Trans Biomed Eng 55(1):358–360

    Article  Google Scholar 

  10. Yan P, Kassim AA (2006) Segmentation of volumetric mra images by using capillary active contour. Med Image Anal 10(3):317–329

    Article  Google Scholar 

  11. Zonoobi D, Kassim AA, Shen W (2009) Vasculature segmentation in mra images using gradient compensated geodesic active contours. J Signal Process Syst 54(1–3):171–181

    Article  Google Scholar 

  12. Cremers D, Rousson M, Deriche R (2007) A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int J Comput Vis 72(2):195–215

    Article  Google Scholar 

  13. Kirbas C, Quek F (2004) A review of vessel extraction techniques and algorithms. ACM Comput Surv (CSUR) 36(2):81–121

    Article  Google Scholar 

  14. Moccia S, De Momi E, El Hadji S, Mattos LS (2018) Blood vessel segmentation algorithms-review of methods, datasets and evaluation metrics. Comput Methods Progr Biomed 158:71–91

    Article  Google Scholar 

  15. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91–108

    Article  Google Scholar 

  16. Hassan H, Farag AA (2003) Cerebrovascular segmentation for mra data using level sets. In: International congress series, vol 1256. Elsevier, pp 246–252

  17. Scherl H, Hornegger J, Prümmer M, Lell M (2007) Semi-automatic level-set based segmentation and stenosis quantification of the internal carotid artery in 3d cta data sets. Med Image Anal 11(1):21–34

    Article  Google Scholar 

  18. Cai X, Chan R, Morigi S, Sgallari F (2013) Vessel segmentation in medical imaging using a tight-frame-based algorithm. SIAM J Imaging Sci 6(1):464–486

    Article  MathSciNet  Google Scholar 

  19. Melinščak M, Prentašić P, Lončarić S (2015) Retinal vessel segmentation using deep neural networks. In: 10th international conference on computer vision theory and applications (VISAPP 2015)

  20. Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2015) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118

    Article  Google Scholar 

  21. Fu H, Xu Y, Lin S, Wong DWK, Liu J (2016) Deepvessel: retinal vessel segmentation via deep learning and conditional random field. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 132–139

  22. Fabijańska A (2018) Segmentation of corneal endothelium images using a u-net-based convolutional neural network. Artif Intell Med 88:1–13

    Article  Google Scholar 

  23. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

  24. Arivazhagan S, Ganesan L (2003) Texture segmentation using wavelet transform. Pattern Recognit Lett 24(16):3197–3203

    Article  Google Scholar 

  25. Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549–1560

    Article  MathSciNet  Google Scholar 

  26. Häuser S, Steidl G (2013) Convex multiclass segmentation with shearlet regularization. Int J Comput Math 90(1):62–81

    Article  MathSciNet  Google Scholar 

  27. Cigaroudy LS, Aghazadeh N (2015) A binary-segmentation algorithm based on shearlet transform and eigenvectors. In: 2015 2nd international conference on pattern recognition and image analysis (IPRIA). IEEE, pp 1–8

  28. Binh NT (2017) Increasing the segmentation of retinal blood vessels in shearlet domain. In: International conference on the development of biomedical engineering in Vietnam. Springer, pp 357–361

  29. Guo Y, Budak Ü, Şengür A, Smarandache F (2017) A retinal vessel detection approach based on shearlet transform and indeterminacy filtering on fundus images. Symmetry 9(10):235

    Article  Google Scholar 

  30. Cai X, Chan RH, Morigi S, Sgallari F (2011) Framelet-based algorithm for segmentation of tubular structures. In: International conference on scale space and variational methods in computer vision. Springer, pp 411–422

  31. Aghazadeh N, Cigaroudy LS (2014) A multistep segmentation algorithm for vessel extraction in medical imaging. arXiv:1412.8656

  32. Kutyniok G et al (2012) Shearlets: multiscale analysis for multivariate data. Springer, Berlin

    Book  Google Scholar 

  33. Kanghui G, Gitta K, Demetrio L (2006) Sparse multidimensional representations using anisotropic dilation and shear operators, Wavelets and Splines (Athens, GA, 2005). Nashboro Press, Nashville, TN, pp 189–201

  34. Dan Z, Chen X, Gan H, Gao C (2011) Locally adaptive shearlet denoising based on Bayesian map estimate. In: 2011 sixth international conference on image and graphics (ICIG). IEEE, pp 28–32

  35. Donoho D, Kutyniok G (2009) Geometric separation using a wavelet–shearlet dictionary. In: SAMPTA’09, pp Special-session

  36. Easley GR, Labate D, Colonna F (2009) Shearlet-based total variation diffusion for denoising. IEEE Trans Image Process 18(2):260–268

    Article  MathSciNet  Google Scholar 

  37. Yi S, Labate D, Easley GR, Krim H (2009) A shearlet approach to edge analysis and detection. IEEE Trans Image Process 18(5):929–941

    Article  MathSciNet  Google Scholar 

  38. Reisenhofer R, Kiefer J, King EJ (2016) Shearlet-based detection of flame fronts. Exp Fluids 57(3):41

    Article  Google Scholar 

  39. Häuser S, Steidl G (2012) Fast finite shearlet transform. arXiv:1202.1773

  40. Kutyniok G, Shahram M, Zhuang X (2012) Shearlab: a rational design of a digital parabolic scaling algorithm. SIAM J Imaging Sci 5(4):1291–1332

    Article  MathSciNet  Google Scholar 

  41. Shearlab. www.shearlab.org. Accessed 30 Jan 2017

  42. Gonzalez RC (2007) Woods RE, image processing, digital image processing, vol 2

  43. Dong B, Shen Z, et al (2010) MRA based wavelet frames and applications. IAS lecture notes series, summer program on the mathematics of image processing, Park City Mathematics Institute, vol 19

  44. Zhao H-K, Chan T, Merriman B, Osher S (1996) A variational level set approach to multiphase motion. J Comput Phys 127(1):179–195

    Article  MathSciNet  Google Scholar 

  45. Buenestado P, Acho L (2018) Image segmentation based on statistical confidence intervals. Entropy 20(1):46

    Article  Google Scholar 

  46. Hansen PC, Nagy JG, Oleary DP (2006) Deblurring images: matrices, spectra, and filtering. SIAM, Philadelphia

    Book  Google Scholar 

  47. Dataset of Medical Images. http://www.osirix-viewer.com. Accessed 30 Jan 2017

  48. Lessig C, Petersen P, Schäfer M (2019) Bendlets: a second-order shearlet transform with bent elements. Appl Comput Harmon Anal 46(2):384–399

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor M. Poureisa (Tabriz University of Medical Sciences) and Azar Mehr MRI Center for providing us some sample images. The Nasser Aghazadeh would like to thanks Professor Gitta Kutyniok for her support during Nasser Aghazadeh's visit in institut für mathematik, Technische Universität Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Aghazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzafam, M., Aghazadeh, N. A three-stage shearlet-based algorithm for vessel segmentation in medical imaging. Pattern Anal Applic 24, 591–610 (2021). https://doi.org/10.1007/s10044-020-00915-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-020-00915-3

Keywords