Skip to main content
Log in

A 2D and 3D discrete bisector function based on annulus

  • Theoretical advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The bisector function is an important tool for analyzing and filtering Euclidean skeletons. In this paper, we are proposing a new way to compute 2D and 3D discrete bisector function based on annuli. From a continuous point of view, a point that belongs to the medial axis is the center of a maximal ball that hits the background in more than one point. The maximal angle between those points is expected to be high for most of the object points and corresponds to the bisector angle. This logic is not really applicable in the discrete space since we may miss some background points that can lead to small bisector angles. In this work we use annuli to find the background points in order to compute the bisector angle. Our approach offers the possibility to change the thickness of the annulus at a given point and is thus flexible when computing skeletons. Our work can be extended to nD and we propose the nD algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Blum H (1967) A transformation for extracting new descriptors of shape. In: Models for the perception of speech and visual form, pp 362–380

  2. Sirin Y, Demirci MF (2016) 2D and 3D shape retrieval using skeleton filling rate. Multimedia Tools Appl 76:7823–7848

    Article  Google Scholar 

  3. Xu Y, Mattikalli R, Khosla P (1992) Motion planning using medial axis. IFAC Proc Vol 25(28):135–140

    Article  Google Scholar 

  4. Le B, Hodgins J (2016) Real-time skeletal skinning with optimized centers of rotation. ACM Trans Graph 35(4):37:1–37:10

    Article  Google Scholar 

  5. Fogg HJ, Armstrong CG, Robinson TT (2014) New techniques for enhanced medial axis based decompositions in 2-d. Procedia Eng 82:162–174

    Article  Google Scholar 

  6. Farin G, Hoschek J, Kim M-S (2002) Handbook of computeraided geometric design, 1st Edition, North Holland IFIP

  7. Chaussard J, Couprie M, Talbot H (2011) Robust skeletonization using the discrete \(\lambda\)-medial axis. Pattern Recogn Lett 32(9):1384–1394

    Article  Google Scholar 

  8. Brandt J, Algazi V (1992) Continuous skeleton computation by voronoi diagram. CVGIP: Image Understand 55:329–338

    Article  Google Scholar 

  9. Näf M, Székely G, Kikinis R, Shenton M, Kübler O (1997) 3D voronoi skeletons and their usage for the characterization and recognition of 3D organ shape. Comput Vis Image Understand 66:147–161

    Article  Google Scholar 

  10. Borgefors G, Nyström I, Baja G (1999) Computing skeletons in three dimensions. Pattern Recogn 32:1225–1236

    Article  Google Scholar 

  11. Bertrand G (1995) A parallel thinning algorithm for medial surfaces. Pattern Recogn Lett 16:979–986

    Article  Google Scholar 

  12. Saha PK, Borgefors G, Baja G (2016) A survey on skeletonization algorithms and their applications. Pattern Recogn Lett 76:3–12

    Article  Google Scholar 

  13. Lohou C, Bertrand G (2004) A 3D 12-subiteration thinning algorithm based on p-simple points. Discret Appl Math 139:171–195

    Article  MathSciNet  Google Scholar 

  14. Németh G, Kardos P, Palágyi K (2011) Thinning combined with iteration-by-iteration smoothing for 3D binary images. Graph Models 73:335–345

    Article  Google Scholar 

  15. Saha PK, Chaudhuri B, Majumder DD (1997) A new shape preserving parallel thinning algorithm for 3D digital images. Pattern Recogn 30:1939–1955

    Article  Google Scholar 

  16. Arcelli C, Baja G (1985) A width-independent fast thinning algorithm. In: IEEE transactions on pattern analysis and machine intelligence PAMI-7 463–474

  17. Borgefors G, Nyström I, di Baja G (1996) Surface skeletonization of volume objects. In: Advances in structural and syntactical pattern recognition, Springer, Berlin, Heidelberg, pp 251–259

  18. Attali D, di Baja G, Thiel E (1995) Pruning discrete and semicontinuous skeletons. In: Image analysis and processing. Springer, Berlin, Heidelberg, pp 488–493

  19. Attali D, Lachaud J (2001) Delaunay conforming iso-surface, skeleton extraction and noise removal. Comput Geometry Theory Appl 19:175–189

    Article  MathSciNet  Google Scholar 

  20. Couprie M, Coeurjolly D, Zrour R (2007) Discrete bisector function and euclidean skeleton in 2D and 3D. Image Vis Comput 25(10):1519–1698

    Article  Google Scholar 

  21. Marie R, Labbani-Igbida O, Mouaddib E (2016) The delta medial axis: a fast and robust algorithm for filtered skeleton extraction. Pattern Recogn 56:26–39

    Article  Google Scholar 

  22. Sun F, Choi Y, Yu Y, Wang W (2016) Medial meshes —a compact and accurate representation of medial axis transform. IEEE Trans Visual Comput Graph 22(3):1278–1290

    Article  Google Scholar 

  23. Chazal F, Lieutier A (2005) The \(\lambda\)-medial axis. Graph Models 67(4):304–331

    Article  Google Scholar 

  24. Postolski M, Couprie M, Janaszewski M (2014) Scale filtered Euclidean medial axis and its hierarchy. Comput Vis Image Understand 129:89–102

    Article  Google Scholar 

  25. Miklos B, Giesen J, Pauly M (2019) Discrete scale axis representations for 3D geometry. ACM Trans Graph 29:4

    Google Scholar 

  26. Giesen J, Miklos B, Pauly M, Wormser C (2009) The scale axis transform. In: Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, SCG ’09, Association for Computing Machinery, New York, NY, USA, p 106–115

  27. Hesselink W, Roerdink J (2008) Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans Pattern Anal Mach Intell 30(12):2204–2217

    Article  Google Scholar 

  28. Attali D, Montanvert A (1996) Modeling noise for a better simplification of skeletons. In: ICIP, Vol 3, pp 13–16

  29. Foskey M, Lin MC, Manocha D (2003) Efficient computation of a simplified medial axis. In: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, SM ’03, Association for Computing Machinery, New York, NY, USA, p 96–107

  30. Talbot H, Vincent L (1992) Euclidean skeletons and conditional bisectors. In: I.S. for Optics, Photonics (eds) Proceedings of Visual Communications and Image Processing, Vol 1818, pp 862–877

  31. Meyer F (1979) Cytologie quantitative et morphologie mathématique, Ph.D. thesis, Ecole des mines de Paris

  32. Danielsson P (1980) Euclidean distance mapping. Comput Graph Image Process 14:227–248

    Article  Google Scholar 

  33. Malandain G, Fernandez-Vidal S (1998) Euclidean skeletons. Image Vis Comput 16(5):317–328

    Article  Google Scholar 

  34. Couprie M, Zrour R (2005) Discrete bisector function and Euclidean skeleton. In: Discrete geometry for computer imagery. Springer, Berlin, Heidelberg, pp 216–227

  35. Sidibe S, Zrour R, Andres E, Largeteau-Skapin G (2019) A discrete bisector function based on annulus. In: Discrete geometry for computer imagery DGCI, Vol. 11414, Springer International Publishing, pp 469–480

  36. Andres E (1994) Discrete circles, rings and spheres. Comput Graph 18(5):695–706

    Article  Google Scholar 

  37. Andres E, Jacob M (1997) Discrete analytical hyperspheres. IEEE Trans Visual Comput Graph 3:75–86

    Article  Google Scholar 

  38. Shamos M (1978) Computational geometry, Ph.D. thesis, Yale University

  39. Malandain G, Boissonnat J-D (2002) Computing the diameter of a point set. Int J Comput Geometry Appl 12(6):489–510

    Article  MathSciNet  Google Scholar 

  40. Digital geometry tools & algorithms library, dgtal (2019) https://dgtal.org/

  41. Remy E, Thiel E (2005) Exact medial axis with Euclidean distance. Image Vis Comput 23(2):167–175

    Article  Google Scholar 

  42. Saito T, Toriwaki J (1994) New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recogn 27(11):1551–1565

    Article  Google Scholar 

  43. Meijster A, Roerdink J, Hesselink W (2000) A general algorithm for computing distance transforms in linear time. Math Morphol Appl Image Signal Process 2000:331–340

    MATH  Google Scholar 

  44. Hirata T (1996) A unified linear-time algorithm for computing distance maps. Inf Process Lett 58(3):129–133

    Article  MathSciNet  Google Scholar 

  45. Mcgill 3D shape benchmark (2019) http://www.cim.mcgill.ca/~shape/benchmark/

  46. Siddiqi K, Zhang J, Macrini D, Shokoufandeh A, Bouix S, Dickinson S (2008) Retrieving articulated 3D models using medial surfaces. Mach Vis Appl 19(4):261–274

    Article  Google Scholar 

  47. PINK, Image processing library (2016) https://perso.esiee.fr/~coupriem/pink/doc/html/

  48. Sebastian T, Klein P, Kimia B (2001) Recognition of shapes by editing shock graphs. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV, pp 755–762

  49. (2019) http://vision.lems.brown.edu/content/available-software-and-databases

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Zrour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fully documented templates are available in the elsarticle package on CTAN

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zrour, R., Andres, E., Sidibe, S. et al. A 2D and 3D discrete bisector function based on annulus. Pattern Anal Applic 24, 1135–1148 (2021). https://doi.org/10.1007/s10044-021-00973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-021-00973-1

Keywords

Navigation