Skip to main content

Advertisement

Log in

Superpixel/voxel medical image segmentation algorithm based on the regional interlinked value

  • Theoretical advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Medical image segmentation can effectively overcome human perception with strong personal limitations. The superpixel/voxel segmentation method has strong adaptability and computational efficiency. It can effectively separate the diseased tissue from normal cells or bone and muscle, which is widely used. This paper proposes a superpixel/voxel medical image segmentation algorithm based on regional interlinked value and block (region) merging, which can segment the two-dimensional bone image and three-dimensional brain image. By computing the regional interlinked value, the proposed method can overcome the problem of the initial setting block size in the traditional superpixel/voxel segmentation method. Next, the blocks with the same features are merged. To segment the superpixel/voxel medical image, the final distance with the intensity feature, the location feature, and the gradient feature is considered. Compared with most state-of-the-art algorithms, the proposed method has strong robustness and efficiency, which provides a solid foundation for further image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Win KP, Kitjaidure Y, Hamamoto K et al (2020) Computer-assisted screening for cervical cancer using digital image processing of pap smear images. Appl Sci 10(5):1800

    Article  Google Scholar 

  2. Wang Y, Qi Q, Shen X (2020) Image segmentation of brain MRI based on LTriDP and superpixels of improved SLIC. Brain Sci 10(2):116

    Article  MathSciNet  Google Scholar 

  3. Galvão FL, Guimarães SJF, Falcão AX (2020) Image segmentation using dense and sparse hierarchies of superpixels. Pattern Recognit 108:107532

    Article  Google Scholar 

  4. Ramadan H, Lachqar C, Tairi H (2020) Saliency-guided automatic detection and segmentation of tumor in breast ultrasound images. Biomed Signal Process Control 60:101945

    Article  Google Scholar 

  5. Ma Z et al (2009) A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput Methods Biomech Biomed Eng 13(2):235–246

    Article  Google Scholar 

  6. Ferreira A, Gentil F, Tavares JMRS (2014) Segmentation algorithms for ear image data towards biomechanical studies. Comput Methods Biomech Biomed Eng 17(8):888–904

    Article  Google Scholar 

  7. Ma Z et al (2010) A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput Methods Biomech Biomed Engin 13(2):235–246

    Article  Google Scholar 

  8. Gonçalves PCT, Tavares JMRS, Jorge RMN (2009) Segmentation and simulation of objects represented in images using physical principles. Int Conf Comput Exp Eng Sci 9(3):203–204

    Google Scholar 

  9. Oliveira RB et al (2016) Computational methods for the image segmentation of pigmented skin lesions: a review. Comput Methods Programs Biomed 131:127–141

    Article  Google Scholar 

  10. Huang X, Yang C, Ranka S et al (2018) Supervoxel-based segmentation of 3D imagery with optical flow integration for spatiotemporal processing. IPSJ Trans Comput Vis Appl 10(1):1–16

    Google Scholar 

  11. Randrianasoa JF, Kurtz C, Desjardin É et al (2018) Binary Partition Tree construction from multiple features for image segmentation. Pattern Recogn 84:237–250

    Article  Google Scholar 

  12. He W, Li C, Guo Y et al (2019) A two-stage gradient ascent-based superpixel framework for adaptive segmentation. Appl Sci 9(12):2421

    Article  Google Scholar 

  13. Saha R, Bajger M, Lee G (2018) Segmentation of cervical nuclei using SLIC and pairwise regional contrast. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society. Annual conference 2018, pp 3422–3425

  14. Gao Z, Wei Bu, Zheng Y et al (2017) Automated layer segmentation of macular OCT images via graph-based SLIC superpixels and manifold ranking approach. Comput Med Imaging Graph 55:42–53

    Article  Google Scholar 

  15. Kim S, Bae W, Masuda K et al (2018) Semi-automatic segmentation of vertebral bodies in MR images of human lumbar spines. Appl Sci 8(9):1586

    Article  Google Scholar 

  16. Zhao Y, Su F, Yan F (2020) Novel semi-supervised hyperspectral image classification based on a superpixel graph and discrete potential method. Remote Sens 12(9):1528

    Article  Google Scholar 

  17. Ghosh P, Mali K, Das SK (2018) Use of spectral clustering combined with normalized cuts (N-Cuts) in an iterative k-means clustering framework (NKSC) for superpixel segmentation with contour adherence. Pattern Recognit Image Anal 28(3):400–409

    Article  Google Scholar 

  18. Guo F, Ng M, Goubran M et al (2020) Improving cardiac MRI convolutional neural network segmentation on small training datasets and dataset shift: a continuous kernel cut approach. Med Image Anal 61:101636

    Article  Google Scholar 

  19. Rajarao C, Singh RP (2020) Improved normalized graph cut with generalized data for enhanced segmentation in cervical cancer detection. Evol Intel 13(1):3–8

    Article  Google Scholar 

  20. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  21. Wu W, Lin J, Wang S et al (2017) A novel multiphoton microscopy images segmentation method based on superpixel and watershed. J Biophotonics 10(4):532–541

    Article  Google Scholar 

  22. Kowal M, Żejmo M, Skobel M et al (2020) Cell nuclei segmentation in cytological images using convolutional neural network and seeded watershed algorithm. J Digit Imaging 33(1):231–242

    Article  Google Scholar 

  23. Zhang M, Xue Y, Ge Y et al (2020) Watershed segmentation algorithm based on luv color space region merging for extracting slope hazard boundaries. ISPRS Int J Geo-Inf 9(4):246

    Article  Google Scholar 

  24. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598

    Article  Google Scholar 

  25. Chen J, Li Z, Huang B (2017) Linear spectral clustering superpixel. IEEE Trans Image Process 26(7):3317–3330

    Article  MathSciNet  MATH  Google Scholar 

  26. Duan J, Chen L, Chen CLP (2018) Multifocus image fusion with enhanced linear spectral clustering and fast depth map estimation. Neurocomputing 318:43–54

    Article  Google Scholar 

  27. Ns R (2016) Image segmentation by using linear spectral clustering. J Telecommun Syst Manag 5(3):1–5

    Article  Google Scholar 

  28. Amami A, Azouz ZB, Alouane TH (2018) AdaSLIC: adaptive supervoxel generation for volumetric medical images. Multimed Tools Appl 11:1–23

    Google Scholar 

  29. Ortega S, Fabelo H, Halicek M et al (2020) Hyperspectral superpixel-wise glioblastoma tumor detection in histological samples. Appl Sci 10(13):4448

    Article  Google Scholar 

  30. Luo B, Xiong J, Xu L et al (2020) Superpixel segmentation based on global similarity and contour region transform. IEICE Trans Inf Syst E103(3):716–719

    Article  Google Scholar 

  31. Diniz JOB, Diniz PHB, Valente TLA, Silva AC, Paiva AC (2019) Spinal cord detection in planning CT for radiotherapy through adaptive template matching, IMSLIC and convolutional neural networks. Comput Methods Programs Biomed 170:53–67

    Article  Google Scholar 

  32. Diniz PHB, Valente TLA, Diniz JOB, Silva AC, Gattass M, Ventura N et al (2018) Detection of white matter lesion regions in MRI using SLIC0 and convolutional neural network. Comput Methods Programs Biomed 167:49–63

    Article  Google Scholar 

  33. da Silva GL, Diniz PS, Ferreira JL, França JV, Silva AC, de Paiva AC, de Cavalcanti EA (2020) Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. Med Biol Eng Comput 58(9):1947–1964

    Article  Google Scholar 

  34. Achanta R et al (2012) SLIC superpixels compared to state-of-the-artsuperpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  35. Saha M, Arun I, Agarwal S, Ahmed R, Chatterjee S, Chakraborty C (2017) Imprint cytology-based breast malignancy screening: an efficient nuclei segmentation technique. J Microsc 268(2):155–171

    Article  Google Scholar 

  36. da Silva GLF, França JVF, Diniz PS, et al (2020) Automatic prostate segmentation on 3D MRI scans using convolutional neural networks with residual connections and superpixels. In: 2020 international conference on systems, signals and image processing (IWSSIP). IEEE, pp 51–56

  37. Aganj I, Harisinghani MG, Weissleder R (2018) Unsupervised medical image segmentation based on the local Center of Mass. Sci Rep 8(1):13012

    Article  Google Scholar 

  38. MenzeBjoern H et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  Google Scholar 

  39. Cogan T, Cogan M, Tamil L (2019) MAPGI: accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning. Comput Biol Med 111:103351

    Article  Google Scholar 

  40. Wu CH, Tsai WH, Chen YH et al (2018) Model-based orthodontic assessments for dental panoramic radiographs. IEEE J Biomed Health Inform 22(2):545–551

    Article  Google Scholar 

  41. Sang N, Chen X, Xu M et al (2015) Super pixel density based clustering automatic image classification method. Int Symp Multispectr Image Process Pattern Recognit 9812:98120Z-98120Z–7

    Google Scholar 

  42. Khan AM, Rajpoot N, Treanor D et al (2014) A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Bio-Med Eng 61(6):1729–1738

    Article  Google Scholar 

  43. João A, Gambaruto A, Pereira R, Sequeira A (2020) Robust and effective automatic parameter choice for medical image filtering. Comput Methods Biomech Biomed Eng Imaging Vis 8(2):152–168

    Article  Google Scholar 

  44. Wieclawek W, Pietka E (2019) Granular filter in medical image noise suppression and edge preservation. Biocybern Biomed Eng 39(1):1–16

    Article  Google Scholar 

  45. Shi H, Zhang Q, Bian M et al (2018) A novel ship detection method based on gradient integral feature for single-polarization synthetic aperture radar imagery. Sensors 18(2):563

    Article  Google Scholar 

  46. Tirandaz Z, Akbarizadeh G, Kaabi H (2020) PolSAR image segmentation based on feature extraction and data compression using Weighted Neighborhood Filter Bank and Hidden Markov random field-expectation maximization. Measurement 153:107432

    Article  Google Scholar 

  47. Lindemann ME, Oehmigen M, Blumhagen JO et al (2017) MR-based truncation and attenuation correction in integrated PET/MR hybrid imaging using HUGE with continuous table motion. Med Phys 44(9):4559–4572

    Article  Google Scholar 

  48. Gimi B, Krol A, He Y et al (2016) Automatic segmentation of canine retinal OCT using adaptive gradient enhancement and region growing. SPIE Med Imaging 9788:97881Q-97881Q–7

    Google Scholar 

  49. Li Y, Hong Z, Cai D et al (2020) A SVM and SLIC based detection method for paddy field boundary line. Sensors 20(9):2610

    Article  Google Scholar 

  50. Lin H, Yuan F, Xing C, Yang J (2020) An edge attention-based geodesic distance for PolSAR image superpixel segmentation. Electron Lett 56(10):510–512

    Article  Google Scholar 

  51. Zu B, Xia K, Li T et al (2019) SLIC superpixel-based l2,1-norm robust principal component analysis for hyperspectral image classification. Sensors 19(3):479

    Article  Google Scholar 

  52. Wang M, Liu X, Gao Y (2017) Superpixel segmentation: a benchmark. Signal Process Image Commun 56:28–39

    Article  Google Scholar 

  53. Ait Mohamed L et al (2020) Hybrid method combining superpixel, supervised learning, and random walk for glioma segmentation. Int J Imaging Syst Technol 31(1):288–301

    Article  Google Scholar 

  54. Han C-Y (2017) Improved SLIC imagine segmentation algorithm based on K-means. Clust Comput 20(2):1017–1023

    Article  Google Scholar 

  55. Bakkari A, Fabijańska A (2016) Features determination from super-voxels obtained with relative linear interactive clustering. Image Process Commun 21(3):69–79

    Article  Google Scholar 

  56. Shao N, Zou H, Chen C et al (2019) Superpixel cosegmentation algorithm for synthetic aperture radar image change detection. J Eng 2019(19):6165–6169

    Article  Google Scholar 

  57. Angulakshmi M, Priya GGL (2019) Walsh hadamard transform for simple linear iterative clustering (SLIC) superpixel based spectral clustering of multimodal MRI brain tumor segmentation. Irbm 40(5):253–262

    Article  Google Scholar 

  58. Albayrak A, Bilgin G (2019) Automatic cell segmentation in histopathological images via two-staged superpixel-based algorithms. Med Biol Eng Comput 57(3):653–665

    Article  Google Scholar 

  59. Wang H, Peng X, Xiao X et al (2017) BSLIC: SLIC superpixels based on boundary term. Symmetry 9(3):31

    Article  MathSciNet  Google Scholar 

  60. Li XX, Shen XJ, Chen HP et al (2017) Image clustering segmentation based on SLIC superpixel and transfer learning. Pattern Recognit Image Anal 27(4):838–845

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundations of China under Grant 61801202. We are also grateful to Prof. Qile Zhang from Quzhou People's Hospital, who provides the hospital dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Wang, X. & Wang, M. Superpixel/voxel medical image segmentation algorithm based on the regional interlinked value. Pattern Anal Applic 24, 1685–1698 (2021). https://doi.org/10.1007/s10044-021-01021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-021-01021-8

Keywords

Navigation