Skip to main content
Log in

A new approach for \(H_{\infty }\) deconvolution filtering of 2D systems described by the Fornasini–Marchesini and discrete moments

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This study proposes a new approach of \(H_{\infty }\) deconvolution filtering of 2D system described by Fornasini–Marchesini model and Tchebichef moments. The challenge of this method is to generate an unknown 2D signal by transmission channel. This canal is mobilized by convolution system and deconvolution filter to rebuild the output signal. To resolve this problem, firstly, we use the Tchebichef moments to extract the feature vectors of a medicinal Cannabis sativa plant for generating the input system with the minimum information. Next, we implement the system with the model of Fornasini–Marchesini for convolution and deconvolution. However, the free matrix variables are used to eliminate coupling between Lyapunov matrix and system matrices to obtain sufficient conditions in linear matrix inequality form to ensure the desired stability and performance of the error systems. Experimental results show that the new approach for \(H_{\infty }\) deconvolution filtering of 2D systems described by the Fornasini–Marchesini model and Tchebichef moments achieves good performance than the recent works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xiao B, Ma JF, Cui JT (2012) Radial Tchebichef moment invariants for image recognition. J Vis Commun Image Represent 23(2):381–386. https://doi.org/10.1016/j.jvcir.2011.11.008

    Article  Google Scholar 

  2. Boukili B, El Mallahi M, El-Amrani A, Hmamed A, Boumhidi I (2021) \(H_{\infty }\) deconvolution filter for two-dimensional numerical systems using orthogonal moments. Optim Control Appl Methods. https://doi.org/10.1002/oca.2730

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouagada D, Dooren PV (2011) On the stability of 2D state-space models. Numer Linear Algebra Appl. https://doi.org/10.1002/nla.836

    Article  MATH  Google Scholar 

  4. El-Amrani A, Boukili B, Hmamed A, Boumhidi I, El Hajjaji A (2018) Robust \(H_{\infty }\) filtering for 2D continuous systems with finite frequency specifications. Int J Syst Sci. https://doi.org/10.1080/00207721.2017.1391960

    Article  MathSciNet  MATH  Google Scholar 

  5. El Mallahi M, Boukili B, Zouhri A, Hmamed A, Qjidaa H (2021) Robust \(H_{\infty }\) deconvolution filtering of 2-D digital systems of orthogonal local descriptor. Multim Tools Appl. https://doi.org/10.1002/oca.2730

    Article  Google Scholar 

  6. Boukili B, Hmamed A, Benzaouia A, El Hajjaji A (2014) \(H_{\infty }\) filtering of two-dimensional T-S fuzzy systems. Circuits Syst Signal Process. https://doi.org/10.1007/s00034-013-9720-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen SF, Fong IK (2006) Robust \(H_{\infty }\) filtering for 2D state-delayed systems with NFT uncertainties. IEEE Trans Signal Process 54(1):274–285

    Article  Google Scholar 

  8. Cui JR, Hu GD (2010) State estimation of 2D stochastic systems represented by FM-II model. Acta Autom Sinica 36(5):755–761. https://doi.org/10.1016/S1874-1029(09)60034-3

    Article  MathSciNet  Google Scholar 

  9. Ding DW, Du X, Li X (2015) Finite-frequency model reduction of two-dimensional digital filters. IEEE Trans Autom Control 60(6):1624–1629

    Article  MathSciNet  Google Scholar 

  10. Du C, Xie L, Soh YC (2000) \(H_{\infty }\) filtering of 2D discrete systems. IEEE Trans Signal Process 48(6):1760–1768

    Article  Google Scholar 

  11. Boukili B, Hmamed A, Tadeo F (2016) Robust \(H_{\infty }\) Filtering for 2D discrete Roesser systems. J Control Autom Electr Syst. https://doi.org/10.1007/s40313-016-0251-5

    Article  Google Scholar 

  12. Li X, Gao H (2012) Robust finite frequency \(H_{\infty }\) filtering for uncertain 2D Roesser systems. Automatica 48:1163–1170

    Article  MathSciNet  Google Scholar 

  13. Palhares RM, Souza CED, Peres PLD (2001) Robust \(H_{\infty }\) filtering for uncertain discrete-time state-delayed systems. IEEE Trans Signal Process 49:1696–1703

    Article  MathSciNet  Google Scholar 

  14. Xiao B, Zhang YH, Li LP, Li WS, Wang G (2016) Explicit Krawtchouk moment invariants for invariant image recognition. J Electron Imaging. https://doi.org/10.1117/1.JEI.25.2

    Article  Google Scholar 

  15. El Mallahi M, Mesbah A, Qjidaa H (2018) 3D radial invariant of dual Hahn moments. Neural Comput Appl 30(7):2283–2294

    Article  Google Scholar 

  16. El Mallahi M, Zouhri A, Mesbah A, El Affar I, Qjidaa H (2018) Radial invariant of 2D and 3D Racah moments. Multim Tools Appl Int J 77(6):6583–6604

    Article  Google Scholar 

  17. El Mallahi M, Zouhri A, EL-mekkaoui J, Qjidaa H (2017) Three dimensional radial krawtchouk moment invariants for volumetric image recognition. Pattern Recognit Image Anal 27(4):810–824

    Article  Google Scholar 

  18. El Mallahi M et al (2017) Three dimensional radial Tchebichef moment invariants for volumetric image recognition. Pattern Recogn Image Anal 27(4):810–824

    Article  Google Scholar 

  19. Mukundan R, Ong SH, Lee PA (2001) Discrete versus continuous orthogonal moments for image analysis. In: Internaternational conference on imaging science, systems and technology-CISST01, Las Vegas, pp 23–29

  20. Fornasini E, Marchesini G (1976) State-space realization theory of two-dimensional filters. IEEE Trans Autom Control 21(4):484–492

    Article  MathSciNet  Google Scholar 

  21. Fornasini E, Marchesini G (1992) Finite memory realization of 2D FIR filters. In: IEEE international symposium on circuits and systems vol 3, pp 1444–1447

  22. Gao H, Meng X, Chen T (2008) New design to Robust \(H_{\infty }\) filters for 2D systems. IEEE Signal Process Lett 15:217–220

    Article  Google Scholar 

  23. Gao H, Lam J, Wang C, Xu S (2005) \(H_{\infty }\) model reduction for uncertain two-dimensional discrete systems. Optim Control Appl Meth 26:199–227

    Article  MathSciNet  Google Scholar 

  24. Chen SF, Fong IK (2006) Robust filtering for 2D state-delayed systems with NFT uncertainties. IEEE Trans Signal Process 54:274–285

    Article  Google Scholar 

  25. Kririm S, Hmamed A, Tadeo F (2015) Robust \(H_{\infty }\) filtering for uncertain 2D singular Roesser models. Circuits Syst Signal Process 34(7):2213–2235. https://doi.org/10.1007/s00034-015-9967-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Boukili B, Hmamed A, Tadeo F (2016) Reduced-order \(H_{\infty }\) filtering with intermittent measurements for a class of 2D systems. J Control Autom Electr Syst. https://doi.org/10.1007/s40313-016-0271-1

    Article  Google Scholar 

  27. Mukundan R, Ong SH, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364

    Article  MathSciNet  Google Scholar 

  28. Mukundan R (2004) Some computational aspects of discrete orthonormal moments. IEEE Trans Image Process 13(8):1055–1059

    Article  MathSciNet  Google Scholar 

  29. El Mallahi M, Zouhri A, Qjidaa H (2018) Radial Meixner moment invariants for 2D and 3D image recognition. Pattern Recognit Image Anal 28:207–216. https://doi.org/10.1134/S1054661818020128

    Article  Google Scholar 

  30. Xie L, Du C, Zhang C, Soh YC (2002) \(H_{\infty }\) deconvolution filtering of 2D digital systems. IEEE Trans Signal Process 50(9):2319–2332

    Article  MathSciNet  Google Scholar 

  31. Roesser R (1975) A discrete state-space model for linear image processing. IEEE Trans Autom Control 20:1–10

    Article  MathSciNet  Google Scholar 

  32. Souza CE, Xie L, Coutinho DF (2010) Robust filtering for 2D discrete-time linear systems with convex-bounded parameter uncertainty. Automatica 46:673–681

    Article  MathSciNet  Google Scholar 

  33. Wu L, Shi P, Gao H, Wang C (2008) \(H_{\infty }\) filtering for 2D Markovian jump systems. Automatica 44(7):1849–1858

    Article  MathSciNet  Google Scholar 

  34. Wei G, Wang Z, Shu H, Fang G (2007) \(H_{\infty }\) deconvolution filter for stochastic systems with interval uncertainties. Circuits Syst Signal Process 26(4):495–512. https://doi.org/10.1007/s00034-007-4004-x

    Article  MathSciNet  MATH  Google Scholar 

  35. Mesbah A et al (2017) Robust reconstruction and generalized dual Hahn moments invariants extraction for 3D images. 3D Res 8:7. https://doi.org/10.1007/s13319-016-0113-8

    Article  Google Scholar 

  36. Wu H, Coatrieux JL, Shu H (2013) New algorithm for constructing and computing scale invariants of 3D Tchebichef moments. Math Probl Eng 12:1–8

    MathSciNet  Google Scholar 

  37. Xu S, Lam J, Zou Y, Lin Z, Paszke W (2005) Robust \(H_{\infty }\) filtering for uncertain 2D continuous systems. IEEE Trans Signal Process 53(5):1731–1738

    Article  MathSciNet  Google Scholar 

  38. Zhang B, Lam J, Xu S (2009) Deconvolution filtering for stochastic systems via homogeneous polynomial Lyapunov function. Signal Process 89:605–614

    Article  Google Scholar 

  39. Zouhri A, Boumhidi I (2021) Stability analysis of interconnected complex nonlinear systems using the Lyapunov and Finsler property. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-10449-9

    Article  Google Scholar 

  40. Bruntha PM, Dhanasekar S, Sagayam KM, Pandian SIA (2019) A modified approach for face recognition using PSO and ABC optimization. Int J Innov Technol Explor Eng 8(7):1571–1577

    Google Scholar 

  41. Martin Sagayam K, Narain Ponraj D, Winston Jenkin, Yaspy JC, Esther Jeba D, Clara Antony (2019) Authentication of biometric system using fingerprint recognition with Euclidean distance and neural network classifier. Int J Technol Explor Eng 8(4):766–771

    Google Scholar 

  42. Martin Sagayam K, Jude Hemanth D (2019) A probabilistic model for state sequence analysis in hidden Markov model for hand gesture recognition. Comput Intell 35(1):51–81

    MathSciNet  Google Scholar 

  43. Mhathesh TSR, Andrew J, Martin Sagayam K, Henesey L (2021) A 3D Convolutional neural network for bacterial image classification. In: Peter J, Fernandes S, Alavi A (eds) Intelligence in big data technologies-beyond the hype. advances in intelligent systems and computing, vol 1167. Springer, Singapore https://doi.org/10.1007/978-981-15-5285-442

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa EL MALLAHI.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BOUKILI, B., EL MALLAHI, M., AMRANI, A. et al. A new approach for \(H_{\infty }\) deconvolution filtering of 2D systems described by the Fornasini–Marchesini and discrete moments. Pattern Anal Applic 25, 63–76 (2022). https://doi.org/10.1007/s10044-021-01030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-021-01030-7

Keywords

Navigation