Skip to main content
Log in

Accurate quaternion fractional-order pseudo-Jacobi–Fourier moments

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Pseudo-Jacobi–Fourier moments (PJFMs) are a set of orthogonal moments which have been successfully applied in the fields of image processing and pattern recognition. In this paper, we present a new set of quaternion fractional-order orthogonal moments for color images, named accurate quaternion fractional-order pseudo-Jacobi–Fourier moments (AQFPJFMs). We initially propose a fast and accurate algorithm for the PJFMs computation of an image using new recursive approach and polar pixel tiling scheme. Then, we define a new set of orthogonal moments, named accurate fractional-order pseudo-JacobiFourier moments, which is characterized by the generic nature and time–frequency analysis capability. We finally extend the gray-level fractional-order PJFMs to color images and present the quaternion fractional-order pseudo-Jacobi–Fourier moments. In addition, we develop a new color image representation for enhancing simultaneously the discriminability and robustness, called mixed low-order moments feature. We conduct extensive experiments to evaluate the performance of the proposed AQFPJFMs, in which the encouraging results demonstrate the efficacy and superiority of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

AFPJFMs:

Accurate fractional-order pseudo-Jacobi–Fourier moments

APJFMs:

Accurate fractional-order pseudo-Jacobi–Fourier moments

AQFPJFMs:

Accurate quaternion fractional-order pseudo-Jacobi–Fourier moments

AR:

Accuracy rate

BER:

Bit error rate

CHFMs:

Chebyshev–Fourier moments

FCMs:

Fractional-order Chebyshev moments

FJFMs:

Fractional-order Jacobi–Fourier moments

FOFMMs:

Fractional-order orthogonal Fourier–Mellin moments

FPHFMs:

Fractional-order polar harmonic Fourier moments

FPHT:

Fractional-order polar harmonic transforms

FPR:

False positive ratio

FQEMs:

Fractional-order quaternion exponential moments

FQZMs:

Fractional-order orthogonal quaternion Zernike moments

JFMs:

Jacobi–Fourier moments

LFMs:

Legendre–Fourier moments

MLMF:

Mixed low-order moments feature

MSRE:

Mean square reconstruction error

OFMMs:

Orthogonal Fourier–Mellin moments

OMs:

Orthogonal moments

PJFMs:

Pseudo-Jacobi–Fourier moments

PSNR:

Peak signal-to-noise ratio

PZMs:

Pseudo-Zernike moments

QRFCMs:

Quaternion radial fractional Charlier moments

RST:

Rotation, scaling, translation

ZMs:

Zernike moments

ZOA:

Zero-order approximation

References

  1. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 2(8):179–187

    MATH  Google Scholar 

  2. Teague MR (1980) Image-analysis via the general-theory of moments. J Opt Soc Am 69(8):920–930

    Article  MathSciNet  Google Scholar 

  3. Pawlak M (2014) Over 50 years of image moments and moment invariants. Gate Comput Sci Res 73(2):91–110

    Article  Google Scholar 

  4. Teh CH, Chin RT (1988) On image analysis by the method of moments. IEEE Trans Pattern Anal Mach Intell 10(4):556–561

    Article  Google Scholar 

  5. Sheng YL, Shen LX (1994) Orthogonal Fourier–Mellin moments for invariant pattern recognition. J Opt Soc Am 11(6):1748–1757

    Article  Google Scholar 

  6. Ping ZL, Wu RG, Sheng YL (2002) Image description with Chebyshev–Fourier moments. J Opt Soc Am 19(9):1748–1754

    Article  MathSciNet  Google Scholar 

  7. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

    Article  Google Scholar 

  8. Ping Z, Ren H, Jian Z et al (2007) Generic orthogonal moments: Jacobi–Fourier moments for invariant image description. Pattern Recogn 40(4):1245–1254

    Article  MATH  Google Scholar 

  9. Bailey RR, Srinath MD (1996) Orthogonal moment features for use with parametric and non-parametric classifiers. IEEE Trans Pattern Anal Mach Intell 18(4):389–399

    Article  Google Scholar 

  10. Amu G, Hasi S, Yang X et al (2004) Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments. Appl Opt 43(10):2093–2101

    Article  Google Scholar 

  11. Camacho C, Báez-Rojas JJ, Toxqui-Quitl C, Padilla-Vivanco A (2014) Color image reconstruction using quaternion Legendre–Fourier moments in polar pixels. In: 2014 IEEE international conference on mechatronics, electronics and automotive engineering (ICMEAE), Cuernavaca, pp 3–8

  12. Amu G, Hasi S, Ai AZ (2015) Research progress of moment invariant image analysis. J Inner Mongolina Agric Univ 26(4):146–150

    Google Scholar 

  13. Qi S, Zhang Y, Wang C et al (2023) A survey of orthogonal moments for image representation: theory, implementation, and evaluation. ACM Comput Surv 55(1):1–35. https://doi.org/10.1145/3479428

    Article  Google Scholar 

  14. Liao SX, Pawlak M (1998) On the accuracy of Zernike moments for image analysis. IEEE Trans Pattern Anal Mach Intell 20:1358–1364

    Article  Google Scholar 

  15. Wee CY, Paramesran R (2007) On the computational aspects of Zernike moments. Image Vis Comput 25(6):967–980

    Article  Google Scholar 

  16. Biswas R, Biswas S (2012) Polar Zernike moments and rotational invariance. Opt Eng 51(8):1–9

    Article  Google Scholar 

  17. Mukundan R, Ramakrishnan KR (1995) Fast computation of Legendre and Zernike moments. Pattern Recogn 28(9):1433–1442

    Article  MathSciNet  Google Scholar 

  18. Papakostas GA, Boutalis YS, Karras DA, Mertzios BG (2007) Fast numerically stable computation of orthogonal Fourier–Mellin moments. IET Comput Vis 1(1):11–16

    Article  MathSciNet  Google Scholar 

  19. Hosny KM, Shouman MA, Abdel Salam HM (2011) Fast computation of orthogonal Fourier–Mellin moments in polar coordinates. J Real-Time Image Process 6(2):73–80

    Article  Google Scholar 

  20. Walia E, Singh C, Goyal A (2012) On the fast computation of orthogonal Fourier–Mellin moments with improved numerical stability. J Real-Time Image Process 7(4):247–256

    Article  Google Scholar 

  21. Xin Y, Pawlak M, Liao S (2012) Accurate computation of Zernike moments in polar coordinates. IEEE Trans Image Process 6(7):996–1004

    Article  Google Scholar 

  22. Camacho-Bello C, Padilla-Vivanco A, Toxqui-Quitl C et al (2016) Reconstruction of color biomedical images by means of quaternion generic Jacobi–Fourier moments in the framework of polar pixels. J Med Imaging 3(1):014004

    Article  Google Scholar 

  23. Bhrawy A, Zaky M (2016) A fractional-order Jacobi Tau method for a class of time-fractional PDEs with variable coefficients. Math Methods Appl Sci 39(7):1765–1779

    Article  MathSciNet  MATH  Google Scholar 

  24. Vargas-Vargas H, Camacho-Bello C, Rivera-López JS et al (2021) Some aspects of fractional-order circular moments for image analysis. Pattern Recogn Lett 149:99–108

    Article  Google Scholar 

  25. Su X, Tao R, Kang X (2019) Analysis and comparison of discrete fractional Fourier transforms. Signal Process 160(7):284–298

    Article  Google Scholar 

  26. Kazem S, Abbasbandy S, Kumar S (2013) Fractional-order Legendre functions for solving fractional-order differential equations. Appl Math Model 37(7):5498–5510

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang H, Li Z, Liu Y (2016) Fractional orthogonal Fourier–Mellin moments for pattern recognition. In: 2016 Chinese conference on pattern recognition (CCPR). Springer, Singapore, pp 766–778

  28. Benouini R, Batioua I, Zenkouar K, Zahi A, Najah S, Qjidaa H (2019) Fractional-order orthogonal Chebyshev moments and moment invariants for image representation and pattern recognition. Pattern Recogn 86:332–343

    Article  Google Scholar 

  29. Yang H, Qi S, Tian J et al (2021) Robust and discriminative image representation: fractional-order Jacobi–Fourier moments. Pattern Recogn 115:107898

    Article  Google Scholar 

  30. Hosny KM, Darwish MM, Aboelenen T (2020) Novel fractional-order polar harmonic transforms for gray-scale and color image analysis. J Frankl Inst 357(4):2533–2560

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang C, Gao H, Yang M et al (2021) Invariant image representation using novel fractional-order polar harmonic Fourier moments. Sensors 21(4):1544

    Article  Google Scholar 

  32. Chen B, Yu M, Su Q, Shim HJ, Shi YQ (2018) Fractional quaternion Zernike moments for robust color image copy-move forgery detection. IEEE Access 6:56637–56646

    Article  Google Scholar 

  33. Wang C, Hao Q, Ma B et al (2021) Fractional-order quaternion exponential moments for color images. Appl Math Comput 400:126061

    MathSciNet  MATH  Google Scholar 

  34. Yamni M, Karmouni H, Sayyouri M et al (2021) Robust zero-watermarking scheme based on novel quaternion radial fractional Charlier moments. Multimed Tools Appl 80(14):21679–21708

    Article  Google Scholar 

  35. Upneja R, Singh C (2015) Fast computation of Jacobi–Fourier moments for invariant image recognition. Pattern Recogn 48(5):1836–1843

    Article  MATH  Google Scholar 

  36. Sáez JL (2017) Comments on “fast computation of Jacobi–Fourier moments for invariant image recognition.” Pattern Recogn 67:16–22

    Article  Google Scholar 

  37. Singh C, Upneja R (2012) Accurate computation of orthogonal Fourier Mellin moments. J Math Imaging Vis 44(3):411–431

    Article  MathSciNet  MATH  Google Scholar 

  38. Singh C, Walia E, Upneja R (2013) Accurate calculation of Zernike moments. Inf Sci 233:255–275

    Article  MathSciNet  MATH  Google Scholar 

  39. Karakasis EG, Papakostas GA, Koulouriotis DE, Tourassis VD (2013) A unified methodology for computing accurate quaternion color moments and moment invariants. IEEE Trans Image Process 23(2):596–611

    Article  MathSciNet  MATH  Google Scholar 

  40. Camacho-Bello C (2014) High-precision and fast computation of Jacobi–Fourier moments for image description. J Opt Soc Am 31(1):124–134

    Article  Google Scholar 

  41. Hamilton WR (1866) Elements of quaternions. Longmans, Green, & Company, London

    Google Scholar 

  42. Camacho-Bello C, Padilla-Vivanco A, Toxqui-Quitl C et al (2016) Reconstruction of color biomedical images by means of quaternion generic Jacobi–Fourier moments in the framework of polar pixels. J Med Imaging 3(1):57–66

    Article  Google Scholar 

  43. Petitcolas APF (2000) Watermarking schemes evaluation. IEEE Signal Process Mag 17(5):58–64

    Article  Google Scholar 

  44. Wen Q, Sun TF, Wang SX (2003) Concept and application of zero-watermark. Acta Electron Sin 31:214–216

    Google Scholar 

  45. Shao Z, Shang Y, Zeng R, Shu H, Coatrieux G, Wu J (2016) Robust watermarking scheme for color image based on quaternion-type moment invariants and visual cryptography. Signal Process Image Commun 48:12–21

    Article  Google Scholar 

  46. The Whole Brain Atlas. http://www.med.harvard.edu/AANLIB/home.html

  47. Yang H, Qi S, Niu P, Wang X (2020) Color image zero-watermarking based on fast quaternion generic polar complex exponential transform. Signal Process Image Commun 82:115747

    Article  Google Scholar 

  48. Xia ZQ, Wang XY, Zhou W, Li R, Wang C, Zhang C (2019) Color medical image lossless watermarking using chaotic system and accurate quaternion Polar Harmonic transforms. Signal Process 157:108–118

    Article  Google Scholar 

  49. Wang CP, Wang XY, Chen XJ, Zhang C (2017) Robust zero-watermarking algorithm based on polar complex exponential transform and logistic mapping. Multimed Tools Appl 76(24):26355–26376

    Article  Google Scholar 

  50. Wang CP, Wang XY, Xia ZQ, Zhang C, Chen XJ (2016) Geometrically resilient color image zero-watermarking algorithm based on quaternion exponent moments. J Vis Commun Image Represent 41:247–259

    Article  Google Scholar 

  51. Chang CC, Lin PY (2008) Adaptive watermark mechanism for rightful ownership protection. J Syst Softw 81(7):1118–1129

    Article  Google Scholar 

  52. The USC-SIPI image database. http://sipi.usc.edu/database/

  53. Xia Z, Wang X, Han B et al (2021) Color image triple zero-watermarking using decimal-order polar harmonic transforms and chaotic system. Signal Process 180:0165–1684

    Article  Google Scholar 

  54. Kang X, Zhao F, Chen Y et al (2020) Combining polar harmonic transforms and 2D compound chaotic map for distinguishable and robust color image zero-watermarking algorithm. J Vis Commun Image Represent 70:1047–3203

    Article  Google Scholar 

  55. Liu J, Li J, Ma J et al (2019) A robust multi-watermarking algorithm for medical images based on DTCWT-DCT and Henon map. Appl Sci 9(4):700–722

    Article  Google Scholar 

  56. Coil-100. http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

  57. Wang XY, Wang L, Tian JL et al (2021) Color image zero-watermarking using accurate quaternion generalized orthogonal Fourier–Mellin moments. J Math Imaging Vis 63:708–734

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported partially by the National Natural Science Foundation of China (Nos. 61472171 & 61701212), Natural Science Foundation of Liaoning Province (No. 2019-ZD-0468), and Scientific Research Project of Liaoning Provincial Education Department (No. LJKZ0985).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Wang or Hongying Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix A

By Eq. (4), the weighting function is:\(w(r) = (1 - r) \cdot r^{2}\).

Here replace the independent variable \(r\) of the radial basis function with the new variable \(r = r^{\alpha } ,r \in [0,1]\), and the new weight function can be obtained as:

$$ w^{\prime}(r^{\alpha } ) = (1 - r^{\alpha } ) \cdot \alpha r^{\alpha - 1} \cdot r^{2\alpha } . $$

We define a new radial basis functions:

$$ \begin{aligned} J^{\prime}_{n} (r^{\alpha } ) & = \left[ {\frac{{w^{\prime}(r)}}{{rb_{n} }}} \right]^{\frac{1}{2}} P_{n} (r^{\alpha } ) = \left[ {\frac{{(1 - r^{\alpha } ) \cdot \alpha r^{\alpha - 1} \cdot r^{2\alpha } }}{{rb_{n} }}} \right]^{\frac{1}{2}} P_{n} (r^{\alpha } ) \\ & = \left[ {\frac{{(1 - r^{\alpha } ) \cdot \alpha r^{3\alpha - 2} }}{{b_{n} }}} \right]^{\frac{1}{2}} P_{n} (r^{\alpha } ) \\ & = ( - 1)^{n} \left[ {\frac{(2n + 4)}{{(n + 3)(n + 1)}}(1 - r^{\alpha } )\alpha r^{3\alpha - 2} } \right]^{\frac{1}{2}} \times P_{n} (\alpha ,r). \\ \end{aligned} $$

The proof is complete.

1.2 Appendix B

Taking the conjugate of \(H_{nm\alpha }^{L}\), there are:

$$ \begin{aligned} \left( {H_{nm\alpha }^{L} } \right)^{ * } & = \left( {\int_{0}^{1} {\int_{0}^{2\pi } {\frac{1}{2\pi }J_{n} (r,\alpha )\exp ( - \mu m\theta )f(r,\theta ,z)} } r{\text{d}}r{\text{d}}\theta } \right)^{ * } \\ & = \int_{0}^{1} {\int_{0}^{2\pi } {\frac{1}{2\pi }(J_{n} (r,\alpha )\exp ( - \mu m\theta )f(r,\theta ,z)} } )^{ * } r{\text{d}}r{\text{d}}\theta \\ & = \int_{0}^{1} {\int_{0}^{2\pi } {\frac{1}{2\pi }(J_{n} (r,\alpha ))^{*} f(r,\theta ,z)(\exp ( - \mu m\theta )} } )^{ * } r{\text{d}}r{\text{d}}\theta \\ & = - \int_{0}^{1} {\int_{0}^{2\pi } {J_{n} (r,\alpha )f(r,\theta ,z)\frac{1}{2\pi }\exp ( - \mu m\theta )} } r{\text{d}}r{\text{d}}\theta \\ & = - H_{( - n)( - m)\alpha }^{R} . \\ \end{aligned} $$

Therefore, \(H_{nm\alpha }^{L} = - (H_{( - n)( - m)\alpha }^{R} )^{ * }\).

1.3 Appendix C

$$ \begin{aligned} H_{nm\alpha }^{L} & = \int_{0}^{1} {\int_{0}^{2\pi } {\frac{1}{2\pi }J_{n} (r,\alpha )\exp ( - \mu m\theta )f(r,\theta ,z)} } r{\text{d}}r{\text{d}}\theta \\ & = \int_{0}^{1} {\int_{0}^{2\pi } {\frac{1}{2\pi }J_{n} (r,\alpha )(f_{R} (r,\theta ){\varvec{i}} + f_{G} (r,\theta ){\varvec{j}} + f_{B} (r,\theta ){\varvec{k}})} } r{\text{d}}r{\text{d}}\theta \\ & = \int_{0}^{1} {\int_{0}^{2\pi } {\frac{1}{2\pi }J_{n} (r,\alpha )\exp ( - \mu m\theta )f_{R} (r,\theta )} } r{\text{d}}r{\text{d}}\theta \cdot {\varvec{i}} \\ & \quad + \int_{0}^{1} {\int_{0}^{2\pi } {\frac{1}{2\pi }J_{n} (r,\alpha )\exp ( - \mu m\theta )f_{G} (r,\theta )} } r{\text{d}}r{\text{d}}\theta \cdot {\varvec{j}} \\ & \quad + \int_{0}^{1} {\int_{0}^{2\pi } {\frac{1}{2\pi }J_{n} (r,\alpha )\exp ( - \mu m\theta )f_{B} (r,\theta )} } r{\text{d}}r{\text{d}}\theta \cdot {\varvec{k}} \\ & = [{\text{Re}} (H_{nm\alpha } (f_{R} )) + {\varvec{\mu}}{\text{Im}} (H_{nm\alpha } (f_{R} ))] \cdot {\varvec{i}} \\ & \quad + [{\text{Re}} (H_{nm\alpha } (f_{G} )) + {\varvec{\mu}}{\text{Im}} (H_{nm\alpha } (f_{G} ))] \cdot {\varvec{j}} \\ & \quad + [{\text{Re}} (H_{nm\alpha } (f_{B} )) + {\varvec{\mu}}{\text{Im}} (H_{nm\alpha } (f_{B} ))] \cdot {\varvec{k}} \\ & = A_{nm\alpha }^{L} + B_{nm\alpha }^{L} {\varvec{i}} + C_{nm\alpha }^{L} {\varvec{j}} + D_{nm\alpha }^{L} {\varvec{k}}\user2{.} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Y., Tian, J. et al. Accurate quaternion fractional-order pseudo-Jacobi–Fourier moments. Pattern Anal Applic 25, 731–755 (2022). https://doi.org/10.1007/s10044-022-01071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-022-01071-6

Keywords

Navigation