Skip to main content
Log in

An alignment-free non-invertible transformation-based method for generating the cancellable fingerprint template

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Since long time fingerprint has been the most compelling biometric due to its permanence, universality, acceptability, and collectability. However, fingerprint recognition raises some privacy concerns. A stolen fingerprint template from the reference database could be used by an antagonist to gain a unauthorized access of the system. Therefore, the fingerprint needs to be secured from being compromised. In this paper, a non-invertible transformation function-based method for generating the cancellable fingerprint template is proposed. The transformation matrix is governed by the user key which is in the form of a randomly generated binary string. An alignment-free approach is proposed in which the fingerprint template is stored in the form of a polar histogram that contains the information about location of neighbouring minutiae around each detected minutia point. The matching score is obtained by computing the Chi-square distance between two templates. The pre-requisites for being the secured template are satisfied by conducting series of experiments on DB1 and DB2 datasets of FVC2000, FVC2002, FVC2004, and FVC2006 databases. The performance is evaluated in both non-transformed and transformed domains by computing error rates based on the receiver operating characteristic (ROC) of the fingerprint recognition system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

adopted from FVC2006 DB1 database b Enhanced fingerprint image c Binarized image d Thinned binarized image e Minutiae points marked by red filled squares

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bolle RM, Connell JH, Pankanti S, Ratha NK, Senior AW (2004) Guide to biometrics. Springer, New York

    Book  Google Scholar 

  2. Yang W, Hu J, Wang S, Wu Q (2018) Biometrics based privacy-preserving authentication and mobile template protection. Wireless communications and mobile computing 2018; Article ID 7107295. doi: https://doi.org/10.1155/2018/7107295.

  3. Minaee S, Abdolrashidi A, Su H, Bennamoun M, Zhang D (2019) Biometrics recognition using deep learning: A survey 2019; arXiv preprint arXiv:1912.00271.

  4. Dargan S, Kumar M (2020) A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Syst Appl 143:113114. https://doi.org/10.1016/j.eswa.2019.113114

    Article  Google Scholar 

  5. Rane M, Latne T, Bhadade U (2020) Biometric recognition using fusion. ICDSMLA 2019:1320–1329. https://doi.org/10.1007/978-981-15-1420-3_142

    Article  Google Scholar 

  6. Alay N, Al-Baity HH (2020) Deep learning approach for multimodal biometric recognition system based on fusion of iris, face, and finger vein traits. Sensors 20(19):5523. https://doi.org/10.3390/s20195523

    Article  Google Scholar 

  7. Minaee S, Abdolrashidi A (2018) Finger-gan: generating realistic fingerprint images using connectivity imposed GAN 2018; arXiv preprint arXiv:1812.10482.

  8. Joshi I, Anand A, Vatsa M, Singh R, Roy SD, Kalra P (2019) Latent fingerprint enhancement using generative adversarial networks. In: 2019 IEEE winter conference on applications of computer vision (WACV); pp 895–903.

  9. Patel VM, Ratha NK, Chellappa R (2015) Cancelable biometrics: a review. IEEE Signal Process Mag 32(5):54–65. https://doi.org/10.1109/MSP.2015.2434151

    Article  Google Scholar 

  10. Manisha KN (2020) Cancelable biometrics: a comprehensive survey. Artif Intell Rev 53:3403–3446. https://doi.org/10.1007/s10462-019-09767-8

    Article  Google Scholar 

  11. Yang W, Wang S, Hu J, Zheng G, Valli C (2019) Security and accuracy of fingerprint-based biometrics: a review. Symmetry 11(2):141. https://doi.org/10.3390/sym11020141

    Article  Google Scholar 

  12. Wang S, Hu J (2014) Design of alignment-free cancellable fingerprint templates via curtailed circular convolution. Pattern Recogn 47(3):1321–1329. https://doi.org/10.1016/j.patcog.2013.10.003

    Article  Google Scholar 

  13. Jin Z, Lim MH, Teoh ABJ, Goi BM (2014) A non-invertible randomized graph-based hamming embedding for generating cancelable fingerprint template. Pattern Recogn Lett 42:137–147. https://doi.org/10.1016/j.patrec.2014.02.011

    Article  Google Scholar 

  14. Ferrara M, Maltoni D, Cappelli R (2014) A two-factor protection scheme for MCC fingerprint templates. In: 2014 international conference of the biometrics special interest group (BIOSIG); pp 1–8.

  15. Sandhya M, Prasad MV (2015) k-Nearest Neighborhood Structure (k-NNS) based alignment-free method for fingerprint template protection. In: 2015 international conference on biometrics (ICB); pp 386–393.

  16. Sandhya M, Prasad MV, Chillarige RR (2016) Generating cancellable fingerprint templates based on Delaunay triangle feature set construction. IET Biometrics 5(2):131–139. https://doi.org/10.1049/iet-bmt.2015.0034

    Article  Google Scholar 

  17. Jin Z, Teoh ABJ, Goi BM, Tay YH (2016) Biometric cryptosystems: a new biometric key binding and its implementation for fingerprint minutiae-based representation. Pattern Recogn 56:50–62. https://doi.org/10.1016/j.patcog.2016.02.024

    Article  Google Scholar 

  18. Wang S, Deng G, Hu J (2017) A partial Hadamard transform approach to the design of cancellable fingerprint templates containing binary biometric representations. Pattern Recogn 61:447–458. https://doi.org/10.1016/j.patcog.2016.08.017

    Article  MATH  Google Scholar 

  19. Jin Z, Hwang JY, Lai YL, Kim S, Teoh ABJ (2018) Ranking-based locality sensitive hashing-enabled cancelable biometrics: index-of-max hashing. IEEE Trans Inf Forensics Secur 13(2):393–407. https://doi.org/10.1109/TIFS.2017.2753172

    Article  Google Scholar 

  20. Kang J, Nyang D, Lee K (2014) Two-factor face authentication using matrix permutation transformation and a user password. Inf Sci 269:1–20. https://doi.org/10.1016/j.ins.2014.02.011

    Article  MathSciNet  Google Scholar 

  21. Lee MJ, Jin Z, Teoh ABJ (2018) One-factor cancellable scheme for fingerprint template protection: Extended feature vector (efv) hashing. In: 2018 IEEE international workshop on information forensics and security (WIFS); pp 1–7.

  22. Trivedi AK, Thounaojam DM, Pal S (2020) Non-Invertible cancellable fingerprint template for fingerprint biometric. Comput Secur 90:101690. https://doi.org/10.1016/j.cose.2019.101690

    Article  Google Scholar 

  23. Dong X, Jin Z, Zhao L, Guo Z (2021) BioCanCrypto: an LDPC coded bio-cryptosystem on fingerprint cancellable template. In: 2021 IEEE international joint conference on biometrics (IJCB); 2021, pp 1–8. doi: https://doi.org/10.1109/IJCB52358.2021.9484391.

  24. Moujahdi C, Bebis G, Ghouzali S, Rziza M (2014) Fingerprint shell: Secure representation of fingerprint template. Pattern Recogn Lett 45:189–196. https://doi.org/10.1016/j.patrec.2014.04.001

    Article  Google Scholar 

  25. Ali SS, Prakash S (2015) Enhanced fingerprint shell. In: 2015 2nd international conference on signal processing and integrated networks (SPIN); pp 801–805

  26. Pandey RK, Govindaraju V (2015) Secure face template generation via local region hashing. In: 2015 international conference on biometrics (ICB); pp 299–304

  27. Abe N, Yamada S, Shinzaki T. Irreversible fingerprint template using minutiae relation code with bloom filter. In: 2015 IEEE 7th international conference on biometrics theory, applications and systems (BTAS); pp 1–7.

  28. Yang W, Hu J, Wang S, Wu Q (2018) Biometrics based privacy-preserving authentication and mobile template protection. Wirel Commun Mob Comput. https://doi.org/10.1155/2018/7107295

    Article  Google Scholar 

  29. Ali SS, Prakash S (2019) 3-dimensional secured fingerprint shell. Pattern Recogn Lett 126:68–77. https://doi.org/10.1016/j.patrec.2018.04.017

    Article  Google Scholar 

  30. Li Z, Bao Y, Lei W (2020) Generating cancellable fingerprint template using local-similar image. In: 2020 IEEE 3rd international conference on electronics and communication engineering (ICECE), pp 157–161

  31. Baghel VS, Ali SS, Prakash S (2021) A non-invertible transformation based technique to protect a fingerprint template. IET Image Proc. https://doi.org/10.1049/ipr2.12130

    Article  Google Scholar 

  32. Tarek M, Hamouda E, Abohamama AS (2021) Multi-instance cancellable biometrics schemes based on generative adversarial network. Appl Intell. https://doi.org/10.1007/s10489-021-02401-7

    Article  Google Scholar 

  33. Maltoni D, Maio D, Jain AK, Prabhakar S (2009) Handbook of fingerprint recognition. Springer, Berlin

    Book  Google Scholar 

  34. Cappelli R, Ferrara M, Franco A, Maltoni D (2007) Fingerprint verification competition 2006. Biometric Technol Today 15(7–8):7–9. https://doi.org/10.1016/S0969-4765(07)70140-6

    Article  Google Scholar 

  35. Hong L, Wan Y, Jain AK (1998) Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell 20(8):777–789. https://doi.org/10.1109/34.709565

    Article  Google Scholar 

  36. Rutovitz D (1966) Pattern recognition. J Royal Statist Soc 129:504–530. https://doi.org/10.2307/2982255

    Article  Google Scholar 

  37. Chen W, Gao Y (2007) A minutiae-based fingerprint matching algorithm using phase correlation. In: 9th biennial conference of the australian pattern recognition society on digital image computing techniques and applications (DICTA 2007); pp 233–238

  38. Feng J (2008) Combining minutiae descriptors for fingerprint matching. Pattern Recogn 41(1):342–352. https://doi.org/10.1016/j.patcog.2007.04.016

    Article  MATH  Google Scholar 

  39. Xu H, Veldhuis RN, Kevenaar TA, Akkermans TA (2009) A fast minutiae-based fingerprint recognition system. IEEE Syst J 3(4):418–427. https://doi.org/10.1109/JSYST.2009.2034945

    Article  Google Scholar 

  40. Jiang X, Yau WY (2000) Fingerprint minutiae matching based on the local and global structures. In: Proceedings 15th international conference on pattern recognition (ICPR-2000); 2: pp 1038–1041

  41. Medina-Pérez MA, García-Borroto M, Gutierrez-Rodríguez AE, Altamirano-Robles L (2012) Improving fingerprint verification using minutiae triplets. Sensors 12(3):3418–3437. https://doi.org/10.3390/s120303418

    Article  Google Scholar 

  42. Ratha NK, Chikkerur S, Connell JH, Bolle RM (2007) Generating cancelable fingerprint templates. IEEE Trans Pattern Anal Mach Intell 29(4):561–572. https://doi.org/10.1109/TPAMI.2007.1004

    Article  Google Scholar 

  43. Wang S, Hu J (2016) A blind system identification approach to cancelable fingerprint templates. Pattern Recogn 54:14–22. https://doi.org/10.1016/j.patcog.2016.01.001

    Article  Google Scholar 

  44. Wang S, Yang W, Hu J (2017) Design of alignment-free cancelable fingerprint templates with zoned minutia pairs. Pattern Recogn 66:295–301. https://doi.org/10.1016/j.patcog.2017.01.019

    Article  Google Scholar 

  45. Sandhya M, Prasad MV (2017) Securing fingerprint templates using fused structures. IET Biometrics 6(3):173–182. https://doi.org/10.1049/iet-bmt.2016.0008

    Article  Google Scholar 

  46. Ali SS, Ganapathi II, Prakash S (2018) Robust technique for fingerprint template protection. IET Biometrics 7(6):536–549. https://doi.org/10.1049/iet-bmt.2018.5070

    Article  Google Scholar 

  47. Yang W, Wang S, Hu J, Zheng G, Valli C (2018) A fingerprint and finger-vein based cancelable multi-biometric system. Pattern Recogn 78:242–251. https://doi.org/10.1016/j.patcog.2018.01.026

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diwakar Agarwal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, D., Bansal, A. An alignment-free non-invertible transformation-based method for generating the cancellable fingerprint template. Pattern Anal Applic 25, 837–852 (2022). https://doi.org/10.1007/s10044-022-01080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-022-01080-5

Keywords

Navigation