Skip to main content
Log in

Autoencoder-based improved deep learning approach for schizophrenic EEG signal classification

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, deep-stacked error minimized extreme learning machine autoencoder (DSEMELMAE) and sine–cosine monarch butterfly optimization-based minimum variance multikernel random vector functional link network are integrated to recognize the schizophrenia electroencephalogram (EEG) data. The unconventional DSEMELMAE network is modelled to derive very unique unsupervised attributes out of the brain signals and employ as inputs to the proposed supervised SCAMBO-MVMKRVFLN classification methodology to recognize accurately by minimizing the mean-square error for identifying schizophrenia data with encouraging accuracy. The DSEMELMAE-SCAMBO-MVMKRVFLN integrated approach is assessed over benchmark EEG databases. The proposed approach is compared with many related RVFLN-based deep learning approaches and many state-of-the-art methods and found to be the outperformer among all the methods, and this approach is highly accepted owing to faster learning speed, better computational simplicity, good generalization capability, outstanding classification accuracy, and small event identification time. The classifier MVMKRVFLN is unique as it classifies the signal with advantages such as the regularization of the randomization, computational economy, less training expenses, the direct inverse along with minimum reconstruction error. The KRVFLN uses multiple kernels such as wavelet, tan hyperbolic and multiquadric to improve the classification performance. The effectiveness of the proposed method is verified by examining three publicly available schizophrenic EEG datasets such as Poland, Kaggle and Moscow datasets and achieved classification accuracies with 99.989%, 95.012% and 96.69%, respectively. The recognition capability, simplicity and robustness of the proposed methodology prove the outstanding overall performances of schizophrenia recognition and diagnosis in comparison with other state-of-the-art approaches and different learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

DSEMELMAE:

Deep-stacked error minimized extreme learning machine autoencoder

SCMBO-MVMKRVFLN:

Sine–cosine monarch butterfly optimization-based minimum variance multikernel random vector functional link network

SZ:

Schizophrenia

EEG:

Electroencephalogram

EMD:

Empirical mode decomposition

SVM:

Support vector machine

CNN:

Convolution neural network

CAD:

Computer-aided diagnosis

LSTM:

Long short time memory

RVMD-OELM:

Robust variational mode decomposition-based optimised extreme learning machine

ANN:

Artificial neural network

NB:

Naïve Bayes

DT:

Decision tree

SLFN:

Single-layer feedforward neural network

ELM:

Extreme learning machine

EMELM:

Error minimized extreme learning machine

DBN:

Deep belief networks

SAE:

Deep-stacked autoencoder

DBN:

Deep belief networks

DSSAE:

Deep-stacked sparse autoencoder

RVFLN:

Random vector functional link network

MVMKRVFLN:

Multikernel random vector functional link network

HC:

Healthy controls

BL:

Best fit individual butterflies

WCA:

Water cycle algorithm

Se:

Sensitivity

Sp:

Specificity

Ac:

Accuracy

Rfp/hr:

False positive rate per hour

Fm:

F-measure

Tp:

True positive

Tn:

True negative

Fn:

False negative

Fp:

False positive

SCAMBO:

Sine-cosine monarch butterfly optimization

DSEMELMAE-SCAMBO-MVMKRVFLN:

Deep-stacked error minimized extreme learning machine autoencoder with sine-cosine monarch butterfly optimization-based minimum variance multikernel-based random vector functional link network

DSEMELMAE-MVMKRVFLN:

Deep-stacked error minimized extreme learning machine autoencoder with minimum variance multikernel random vector functional link network

DSEMELMAE-MVKRVFLN:

Deep-stacked error minimized extreme learning machine autoencoder with minimum variance kernel-based random vector functional link network

DSEMELMAE-MVRVFLN:

Deep-stacked error minimized extreme learning machine autoencoder with minimum variance random vector functional link network

DSEMELMAE-KRVFLN:

Deep-stacked error minimized extreme learning machine autoencoder with kernel-based random vector functional link network

DSEMELMAE-RVFLN:

Deep-stacked error minimized extreme learning machine autoencoder with random vector functional link network

DSELMAE-MVMKRVFLN:

Deep-stacked extreme learning machine autoencoder with minimum variance multikernel-based random vector functional link network

DSELMAE-MVKRVFLN:

Deep-stacked extreme learning machine autoencoder with minimum variance kernel-based random vector functional link network

DSELMAE-MVRVFLN:

Deep-stacked extreme learning machine autoencoder with minimum variance random vector functional link network

DSAE-MVMKRVFLN:

Deep-stacked autoencoder with minimum variance multikernel-based random vector functional link network

RBPNN:

Radial basis probabilistic neural network

CO:

Chimp optimization

RFO:

Red fox optimization

References

  1. Chatterjee I, Agarwal M, Rana B, Lakhyani N, Kumar N (2018) Bi-objective approach for computer-aided diagnosis of schizophrenia patients using fMRI data. Multimed Tools Appl 77(20):26991–27015

    Article  Google Scholar 

  2. Han K, Kim IY, Kim JJ (2012) Assessment of cognitive flexibility in real life using virtual reality: a comparison of healthy individuals and schizophrenia patients. Comput Biol Med 42(8):841–847

    Article  Google Scholar 

  3. Das K, Pachori RB (2021) Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomed Signal Process Control 67:102525

    Article  Google Scholar 

  4. Oh SL, Vicnesh J, Ciaccio EJ, Yuvaraj R, Acharya UR (2019) Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals. Appl Sci 9(14):2870

    Article  Google Scholar 

  5. Jahmunah V, Oh SL, Rajinikanth V, Ciaccio EJ, Cheong KH, Arunkumar N, Acharya UR (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698

    Article  Google Scholar 

  6. Krishnan PT, Raj ANJ, Balasubramanian P, Chen Y (2020) Schizophrenia detection using multivariate empirical mode decomposition and entropy measures from multichannel EEG signal. Biocybern Biomed Eng 40(3):1124–1139

    Article  Google Scholar 

  7. Shalbaf A, Bagherzadeh S, Maghsoudi A (2020) Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Phys Eng Sci Med 43:1–11

    Article  Google Scholar 

  8. Racz FS, Stylianou O, Mukli P, Eke A (2020) Multifractal and entropy-based analysis of delta band neural activity reveals altered functional connectivity dynamics in schizophrenia. Front Syst Neurosci 14:49

    Article  Google Scholar 

  9. Aslan Z, Akin M (2020) Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals. Traitement du Signal 37(2):235–244

    Article  Google Scholar 

  10. Chandran AN, Sreekumar K. Subha D (2020) EEG-based automated detection of schizophrenia using long short-term memory (LSTM) network. Advances in Machine Learning and Computational Intelligence, Springer, pp 229–236

  11. Sharma M, Acharya UR (2021) Automated detection of schizophrenia using optimal wavelet-based l1-norm features extracted from single-channel EEG. Cogn Neurodyn 15:1–14

    Article  Google Scholar 

  12. Khare SK, Bajaj V (2022) A hybrid decision support system for automatic detection of Schizophrenia using EEG signals. Comput Biol Med 141:105028

    Article  Google Scholar 

  13. Beritelli F, Capizzi G, Sciuto GL, Napoli C, Woźniak M (2018) A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis. Neural Netw 108:331–338

    Article  Google Scholar 

  14. Yan W, Calhoun V, Song M, Cui Y, Yan H, Liu S, Sui J (2019) Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data. EBioMedicine 47:543–552

    Article  Google Scholar 

  15. Witten IH, Frank E (2002) Data mining: practical machine learning tools and techniques with Java implementations. AcmSigmod Record 31(1):76–77

    Article  Google Scholar 

  16. Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122

    Article  Google Scholar 

  17. Feng G, Huang GB, Lin Q, Gay R (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8):1352–1357

    Article  Google Scholar 

  18. Narejo S, Pasero E, Kulsoom F (2016) EEG based eye state classification using deep belief network and stacked autoencoder. Int J Electr Comput Eng (IJECE) 6(6):3131–3141

    Article  Google Scholar 

  19. Dong W, Wozniak M, Wu J, Li W, Bai Z (2022) De-noising aggregation of graph neural networks by using principal component analysis. IEEE Transactions on Industrial Informatics

  20. Lin Q, Ye SQ, Huang XM, Li SY, Zhang MZ, Xue Y, Chen WS (2016) Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning. In: International conference on intelligent computing, Springer, Cham, pp 802–810

  21. Zhang L, Suganthan PN (2016) A comprehensive evaluation of random vector functional link networks. Inf Sci 367:1094–1105

    Article  Google Scholar 

  22. Nayak DR, Dash R, Majhi B, Pachori RB, Zhang Y (2020) A deep stacked random vector functional link network autoencoder for diagnosis of brain abnormalities and breast cancer. Biomed Signal Process Control 58:101860

    Article  Google Scholar 

  23. Sahani M, Dash PK (2020) FPGA-based deep convolutional neural network of process adaptive VMD data with online sequential RVFLN for power quality events recognition. IEEE Trans Power Electron 36(4):4006–4015

    Article  Google Scholar 

  24. Parija S, Dash PK, Bisoi R (2020) Multi-kernel-based random vector functional link network with decomposed features for epileptic EEG signal classification. IET Signal Proc 14(3):162–174

    Article  Google Scholar 

  25. Rout SK, Sahani M, Dash PK, Biswal PK (2021) Multifuse multilayer multikernel RVFLN+ of process modes decomposition and approximate entropy data from iEEG/sEEG signals for epileptic seizure recognition. Comput Biol Med 132:104299

    Article  Google Scholar 

  26. Wang GG, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31(7):1995–2014

    Article  Google Scholar 

  27. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  28. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Article  Google Scholar 

  29. Połap D, Woźniak M (2017) Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism. Symmetry 9(10):203

    Article  Google Scholar 

  30. Połap D, Woźniak M (2021) Red fox optimization algorithm. Expert Syst Appl 166:114107

    Article  Google Scholar 

  31. Khishe M, Mosavi MR (2020) Chimp optimization algorithm. Expert Syst Appl 149:113338

    Article  Google Scholar 

  32. Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problems. Eng Sci Technol Int J 20(6):1586–1601

    Google Scholar 

  33. Chegini SN, Bagheri A, Najafi F (2018) PSOSCALF: a new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems. Appl Soft Comput 73:697–726

    Article  Google Scholar 

  34. Naik J, Dash PK, Bisoi R (2021) Optimized droop controller based energy management for stand-alone micro-grid using hybrid monarch butterfly and sine-cosine algorithm. Sustain Technol Assess 46:101310

    Google Scholar 

  35. Olejarczyk E, Jernajczyk W (2017) Graph-based analysis of brain connectivity in schizophrenia. PLoS ONE 12(11):e0188629

    Article  Google Scholar 

  36. Siuly S, Khare SK, Bajaj V, Wang H, Zhang Y (2020) A computerized method for automatic detection of schizophrenia using EEG signals. IEEE Trans Neural Syst Rehabil Eng 28(11):2390–2400

    Article  Google Scholar 

  37. Khare SK, Bajaj V, Acharya UR (2021) SPWVD-CNN for automated detection of schizophrenia patients using EEG signals. IEEE Trans Instrum Meas 70:1–9

    Article  Google Scholar 

  38. Phang CR, Ting CM, Noman F, Ombao H (2019) Classification of EEG-based brain connectivity networks in schizophrenia using a multi-domain connectome convolutional neural network. Preprint http://arxiv.org/abs/1903.08858

  39. Ganaie MA, Tanveer M, Suganthan PN (2020) Minimum variance embedded random vector functional link network. In: International conference on neural information processing, Springer, Cham, pp 412–419

  40. Dash PK, Majumder I, Nayak N, Bisoi R (2020) Point and interval solar power forecasting using hybrid empirical wavelet transform and robust wavelet kernel ridge regression. Nat Resour Res 29:1–29

    Article  Google Scholar 

  41. Sahani M, Rout SK, Dash PK (2021) Epileptic seizure recognition using reduced deep convolutional stack autoencoder and improved kernel RVFLN from EEG signals. IEEE Trans Biomed Circuits Syst 15(3):595–605

    Article  Google Scholar 

  42. K. Singh, S. Singh, J. Malhotra (2020) Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients, Proc Inst Mech Engrs Part H: J Eng Med, 0954411920966937

  43. Garcia S, Herrera F (2008) An extension on" statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J Mach Learn Res 9(12)

  44. Khare SK, Bajaj V (2021) A self-learned decomposition and classification model for schizophrenia diagnosis. Comput Methods Programs Biomed 211:106450

    Article  Google Scholar 

  45. Khare SK, Bajaj V, Siuly S, Sinha GR (2020) Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals. In: Modelling and analysis of active biopotential signals in healthcare IOP Publishing, vol 1, pp 1–26

  46. Phang CR, Noman F, Hussain H, Ting CM, Ombao H (2019) A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns. IEEE J Biomed Health Inform 24(5):1333–1343

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parija, S., Sahani, M., Bisoi, R. et al. Autoencoder-based improved deep learning approach for schizophrenic EEG signal classification. Pattern Anal Applic 26, 403–435 (2023). https://doi.org/10.1007/s10044-022-01107-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-022-01107-x

Keywords

Navigation