Skip to main content
Log in

Cross-modal face recognition with illumination-invariant local discrete cosine transform binary pattern (LDCTBP)

  • Short Paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

With the ever-increasing security threats in recent years, biometric authentication has become omnipresent. Among all biometric characteristics, face recognition research has gained traction lately. This paper proposes a new face image descriptor named Local Discrete Cosine Transform Binary Pattern (LDCTBP) for illumination- and modality-invariant face recognition. Utilizing the frequency segregation behavior of Discrete Cosine Transform (DCT), an effective cross-modal illumination-agnostic local feature descriptor has been formulated. Eventually, by encoding the illumination-normalized DCT coefficients into a binary pattern, Local Discrete Cosine Transform Binary Pattern has been generated. Qualitative and quantitative analysis performed on the Extended Yale-B, CUFSF, and TUFTS dataset depict the supremacy of the proposed framework over other state-of-the-arts. Moreover, the proposed LDCTBP has been integrated with a light-weight Convolutional Neural Network (CNN) to prove the importance of handcrafted features in CNN training.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Koley S, Roy H, Bhattacharjee D (2021) Gammadion binary pattern of Shearlet coefficients (GBPSC): an illumination-invariant heterogeneous face descriptor. Pattern Recognit Lett 145:30–36. https://doi.org/10.1016/j.patrec.2021.01.028

    Article  Google Scholar 

  2. Koley S, Roy H, Dhar S, Bhattacharjee D (2022) Illumination invariant face recognition using fused cross lattice pattern of phase congruency (FCLPPC). Inf Sci 584:633–648. https://doi.org/10.1016/j.ins.2021.10.059

    Article  Google Scholar 

  3. Roy H, Bhattacharjee D (2016) Heterogeneous face matching using geometric edge-texture feature (GETF) and multiple fuzzy-classifier system. Appl Soft Comput J 46:967–979. https://doi.org/10.1016/j.asoc.2015.12.006

    Article  Google Scholar 

  4. Bhattacharjee D, Roy H (2021) Pattern of local gravitational force (PLGF): a novel local image descriptor. IEEE Trans Pattern Anal Mach Intell 43(2):595–607. https://doi.org/10.1109/TPAMI.2019.2930192

    Article  Google Scholar 

  5. Roy H, Koley S (2021) Local-friis-radiation-pattern (LFRP) for face recognition. Sens Imaging. https://doi.org/10.1007/s11220-020-00325-z

    Article  Google Scholar 

  6. Bhattacharya S, Nainala GS, Rooj S, Routray A (2019) Local force pattern (LFP): descriptor for heterogeneous face recognition. Pattern Recognit Lett 125:63–70. https://doi.org/10.1016/j.patrec.2019.03.028

    Article  Google Scholar 

  7. Kan M, Shan S, Zhang H, Lao S, Chen X (2016) Multi-view discriminant analysis. IEEE Trans Pattern Anal Mach Intell 38(1):188–194. https://doi.org/10.1109/TPAMI.2015.2435740

    Article  Google Scholar 

  8. Klare BF, Jain AK (2013) Heterogeneous face recognition using kernel prototype similarities. IEEE Trans Pattern Anal Mach Intell 35(6):1410–1422. https://doi.org/10.1109/TPAMI.2012.229

    Article  Google Scholar 

  9. Liu X, Song L, Wu X, Tan T (2016) Transferring deep representation for NIR-VIS heterogeneous face recognition. In: Proceeding international conference on biometrics, pp 1–8. https://doi.org/10.1109/ICB.2016.7550064

  10. Taigman Y, Yang M, Ranzato M, Wolf L (2014) DeepFace: closing the gap to human-level performance in face verification. Proc Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2014.220

    Article  Google Scholar 

  11. Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) SphereFace: deep hypersphere embedding for face recognition. Proc Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2017.713

    Article  Google Scholar 

  12. Wang H, Wang Y, Zhou Z, Ji X, Gong D, Zhou J, Li Z, Liu W (2018) CosFace: large margin cosine loss for deep face recognition. Proc Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2018.00552

    Article  Google Scholar 

  13. Deng J, Guo J, Xue N, Zafeiriou S (2019) ArcFace: additive angular margin loss for deep face recognition. Proc Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2019.00482

    Article  Google Scholar 

  14. Goel T, Murugan R (2020) Classifier for face recognition based on deep convolutional - optimized kernel extreme learning machine. Comput Electr Eng 85:106640. https://doi.org/10.1016/j.compeleceng.2020.106640

    Article  Google Scholar 

  15. Hu G, Yang Y, Yi D, Kittler J, Christmas W, Li SZ, Hospedales T (2016) When face recognition meets with deep learning: an evaluation of convolutional neural networks for face recognition. In: Proceedings of the IEEE international conference on computer vision, p 384–392. https://doi.org/10.1109/ICCVW.2015.58

  16. Saeed U, Masood K, Dawood H (2021) Illumination normalization techniques for makeup-invariant face recognition. Comput Electr Eng 89:106921. https://doi.org/10.1016/j.compeleceng.2020.106921

    Article  Google Scholar 

  17. Maani R, Kalra S, Yang YH (2013) Rotation invariant local frequency descriptors for texture classification. IEEE Trans Image Process 22(6):2409–2419. https://doi.org/10.1109/TIP.2013.2249081

    Article  MathSciNet  MATH  Google Scholar 

  18. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  19. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650. https://doi.org/10.1109/TIP.2010.2042645

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu L, Zhao L, Long Y, Kuang G, Fieguth P (2012) Extended local binary patterns for texture classification. Image Vis Comput 30(2):86–99. https://doi.org/10.1016/j.imavis.2012.01.001

    Article  Google Scholar 

  21. Ul Hussain S, Napoléon T, Jurie F (2012) Face recognition using local quantized patterns. In Proceeding british machive vision conference, p 716–729. https://doi.org/10.5244/C.26.99

  22. Liao S, Zhu X, Lei Z, Zhang L, Li SZ (2007) Learning multi-scale block local binary patterns for face recognition. Lect Notes Comput Sci 4642:828–837. https://doi.org/10.1007/978-3-540-74549-5_87

    Article  Google Scholar 

  23. Chen W, Er MJ, Wu S (2006) Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Trans Syst Man Cybern Part B Cybern 36(2):458–466. https://doi.org/10.1109/TSMCB.2005.857353

    Article  Google Scholar 

  24. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650. https://doi.org/10.1109/TIP.2010.2042645

    Article  MathSciNet  MATH  Google Scholar 

  25. Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput C–23(1):90–93. https://doi.org/10.1109/T-C.1974.223784

    Article  MathSciNet  MATH  Google Scholar 

  26. Roy H, Bhattacharjee D (2016) Local-gravity-face (LG-face) for illumination-invariant and heterogeneous face recognition. IEEE Trans Inf Forensics Secur 11(7):1412–1424. https://doi.org/10.1109/TIFS.2016.2530043

    Article  Google Scholar 

  27. Burt P, Adelson E (1983) The laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540. https://doi.org/10.1109/TCOM.1983.1095851

    Article  Google Scholar 

  28. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660. https://doi.org/10.1109/34.927464

    Article  Google Scholar 

  29. Sim T, Baker S, Bsat M (2003) The cmu pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618. https://doi.org/10.1109/TPAMI.2003.1251154

    Article  Google Scholar 

  30. Weyrauch B, Heisele B, Huang J, Blanz V (2004) Component-based face recognition with 3d morphable models. In: Proceedings computer vision pattern recognition workshop, pp 85–85. https://doi.org/10.1109/CVPR.2004.315

  31. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings computer vision pattern recognition, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  32. Wang X, Tang X (2009) Face photo-sketch synthesis and recognition. IEEE Trans Pattern Anal Mach Intell 31(11):1955–1967. https://doi.org/10.1109/TPAMI.2008.222

    Article  Google Scholar 

  33. Zhang W, Wang X, Tang X (2011) Coupled information-theoretic encoding for face photo-sketch recognition. In: Proceedings computer vision pattern recognition, pp 513–520. https://doi.org/10.1109/CVPR.2011.5995324

  34. Panetta K, Samani A, Yuan X, Wan Q, Agaian S, Rajeev S, Kamath S, Rajendran R, Rao SP, Kaszowska A, Taylor HA (2020) A comprehensive database for benchmarking imaging systems. IEEE Trans Pattern Anal Mach Intell 42(3):509–520. https://doi.org/10.1109/TPAMI.2018.2884458

    Article  Google Scholar 

  35. Roy H, Bhattacharjee D (2017) Face sketch-photo recognition using local gradient checksum: LGCS. Int J Mach Learn Cybern 8(5):1457–1469. https://doi.org/10.1007/s13042-016-0516-0

    Article  Google Scholar 

  36. Roy H, Bhattacharjee D (2016) Face sketch-photo matching using the local gradient fuzzy pattern. IEEE Intell Syst 31(3):30–39. https://doi.org/10.1109/MIS.2016.44

    Article  Google Scholar 

  37. Zhong F, Zhang J (2013) Face recognition with enhanced local directional patterns. Neurocomputing 119:375–384. https://doi.org/10.1016/j.neucom.2013.03.020

    Article  Google Scholar 

  38. Lai ZR, Dai DQ, Ren CX, Huang KK (2015) Multiscale logarithm difference edgemaps for face recognition against varying lighting conditions. IEEE Trans Image Process 24(6):1735–1747. https://doi.org/10.1109/TIP.2015.2409988

    Article  MathSciNet  MATH  Google Scholar 

  39. Seo HJ, Milanfar P (2011) Face verification using the lark representation. IEEE Trans Inf Forensics Secur 6(4):1275–1286. https://doi.org/10.1109/TIFS.2011.2159205

    Article  Google Scholar 

  40. An G, Wu J, Ruan Q (2010) An illumination normalization model for face recognition under varied lighting conditions. Pattern Recognit Lett 31(9):1056–1067. https://doi.org/10.1016/j.patrec.2010.01.021

    Article  Google Scholar 

  41. Lu J, Liong VE, Zhou J (2018) Simultaneous local binary feature learning and encoding for homogeneous and heterogeneous face recognition. IEEE Trans Pattern Anal Mach Intell 40(8):1979–1993. https://doi.org/10.1109/TPAMI.2017.2737538

    Article  Google Scholar 

  42. Cao B, Wang N, Li J, Gao X (2019) Data augmentation-based joint learning for heterogeneous face recognition. IEEE Trans Neural Netw Learn Syst 30(6):1731–1743. https://doi.org/10.1109/TNNLS.2018.2872675

    Article  MathSciNet  Google Scholar 

  43. Wang N, Gao X, Li J (2018) Random sampling for fast face sketch synthesis. Pattern Recognit 76:215–227. https://doi.org/10.1016/j.patcog.2017.11.008

    Article  Google Scholar 

  44. Wang N, Gao X, Sun L, Li J (2018) Anchored neighborhood index for face sketch synthesis. IEEE Trans Circuits Syst Video Technol 28(9):2154–2163. https://doi.org/10.1109/TCSVT.2017.2709465

    Article  Google Scholar 

  45. Ren CX, Lei Z, Dai DQ, Li SZ (2016) Enhanced local gradient order features and discriminant analysis for face recognition. IEEE Trans Cybern 46(11):2656–2669. https://doi.org/10.1109/TCYB.2015.2484356

    Article  Google Scholar 

  46. Pang M, Ming Cheung Y, Wang B, Liu R (2019) Robust heterogeneous discriminative analysis for face recognition with single sample per person. Pattern Recognit 89:91–107. https://doi.org/10.1016/j.patcog.2019.01.005

    Article  Google Scholar 

  47. Roy H, Bhattacharjee D (2018) A novel quaternary pattern of local maximum quotient for heterogeneous face recognition. Pattern Recognit Lett 113:19–28. https://doi.org/10.1016/j.patrec.2017.09.029

    Article  Google Scholar 

  48. Roy H, Bhattacharjee D (2018) A novel local wavelet energy mesh pattern (LWEMeP) for heterogeneous face recognition. Image Vis Comput 72:1–13. https://doi.org/10.1016/j.imavis.2018.01.004

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SK: Conceptualization, Methodology, Software, Writing - original draft, Visualization. HR: Conceptualization, Writing - review & editing. SD: Data curation, Validation. DB: Supervision, Writing - review.

Corresponding author

Correspondence to Subhadeep Koley.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koley, S., Roy, H., Dhar, S. et al. Cross-modal face recognition with illumination-invariant local discrete cosine transform binary pattern (LDCTBP). Pattern Anal Applic 26, 847–859 (2023). https://doi.org/10.1007/s10044-023-01139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-023-01139-x

Keywords

Navigation