Skip to main content
Log in

Epileptic EEG signal classification using an improved VMD-based convolutional stacked autoencoder

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Numerous techniques have been explored so far for epileptic electroencephalograph (EEG) signal detection and classification. Deep learning-based approaches are in recent demand for data classification with huge features. In this paper, an improved deep learning approach based on convolutional features followed by stacked autoencoder (CSAE) and kernel extreme learning machine (KELM) classifier at the end is proposed for EEG signal classification. The convolutional network extracts initial features by convolution, and after this stage, the features are supplied to stacked autoencoder (SAE) for obtaining final compressed features. These suitable features are then fed to KELM classifier for identifying seizure, seizure-free and healthy EEG signals. The EEG signals are decomposed through chaotic water cycle algorithm-optimised variational mode decomposition (CWCA-OVMD) from which the optimised number of efficient modes is obtained yielding six features like energy, entropy, standard deviation, variance, kurtosis, and skewness. These CWCA-OVMD-based features are then fed to the CSAE for the extraction of relevant features. Once the features are obtained, the KELM classifier is used to classify the EEG signal. The classification results are compared with different deep learning classifiers validating the efficacy of the proposed model. The KELM classifier avoids the choice of hidden neurons in the end layer unlike traditional classifiers which is one of the major advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used in this paper are publicly available [44] [45].

References

  1. World Health Organization (2012) Fact sheet on epilepsy [Online]. Available: http://www.who.int/mediacentre/factsheets/fs999/en/index.html

  2. Polat K, Güneş S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187(2):1017–1026

    MathSciNet  Google Scholar 

  3. Samiee K, Kovacs P, Gabbouj M (2014) Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform. IEEE Trans Biomed Eng 62(2):541–552

    Article  PubMed  Google Scholar 

  4. Houssein EH, Hamad A, Hassanien AE, Fahmy AA (2019) Epileptic detection based on whale optimization enhanced support vector machine. J Inf Optim Sci 40(3):699–723

    MathSciNet  Google Scholar 

  5. Wang L, Xue W, Li Y, Luo M, Huang J, Cui W, Huang C (2017) Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 19(6):222

    Article  ADS  Google Scholar 

  6. Li M, Chen W, Zhang T (2017) Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble. Biomed Signal Process Control 31:357–365

    Article  Google Scholar 

  7. Singh G, Singh B, Kaur M (2019) Grasshopper optimization algorithm–based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals. Med Biol Eng Comput 57(6):1323–1339

    Article  PubMed  Google Scholar 

  8. Bizopoulos PA, Tsalikakis DG, Tzallas AT, Koutsouris DD, Fotiadis DI (2013) EEG epileptic seizure detection using k-means clustering and marginal spectrum based on ensemble empirical mode decomposition. In 13th IEEE international conference on bio. Informatics and bio. engineering. IEEE, pp 1–4

  9. Hassan AR, Haque MA (2015) Epilepsy and seizure detection using statistical features in the complete ensemble empirical mode decomposition domain. In TENCON 2015–2015 IEEE region 10 conference. IEEE, pp 1–6

  10. Zhang T, Chen W (2016) LMD based features for the automatic seizure detection of EEG signals using SVM. IEEE Trans Neural Syst Rehabil Eng 25(8):1100–1108

    Article  ADS  PubMed  Google Scholar 

  11. Bhattacharyya A, Pachori RB (2017) A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans Biomed Eng 64(9):2003–2015

    Article  PubMed  Google Scholar 

  12. Dragomiretskiy K, Zosso D (2013) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhang T, Chen W, Li M (2017) AR based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG using random forest classifier. Biomed Signal Process Control 31:550–559

    Article  Google Scholar 

  14. Murugavel AM, Ramakrishnan S (2016) Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification. Med Biol Eng Compu 54(1):149–161

    Article  Google Scholar 

  15. Zhang T, Chen W, Li M (2018) Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybern Biomed Eng 38(3):519–534

    Article  Google Scholar 

  16. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  17. Huang GB, Zhou H, Ding X, Zhang R (2011) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybern) 42(2):513–529

    Article  Google Scholar 

  18. Iosifidis A, Tefas A, Pitas I (2015) On the kernel extreme learning machine classifier. Pattern Recogn Lett 54:11–17

    Article  ADS  Google Scholar 

  19. Liu X, Wang L, Huang GB, Zhang J, Yin J (2015) Multiple kernel extreme learning machine. Neurocomputing 149:253–264

    Article  Google Scholar 

  20. Zhang Y, Wang Y, Zhou G, Jin J, Wang B, Wang X, Cichocki A (2018) Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst Appl 96:302–310

    Article  Google Scholar 

  21. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278

    Article  PubMed  Google Scholar 

  22. Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Ball T (2017) Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp 38(11):5391–5420

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gopalakrishnan K, Khaitan SK, Choudhary A, Agrawal A (2017) Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr Build Mater 157:322–330

    Article  Google Scholar 

  24. Masci J, Meier U, Cireşan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: international conference on artificial neural networks. Springer, Berlin, Heidelberg, pp 52–59

  25. Hussein R, Palangi H, Ward R, Wang ZJ (2018) Epileptic seizure detection: a deep learning approach. arXiv preprint arXiv:1803.09848

  26. Asif U, Roy S, Tang J, Harrer S (2019) SeizureNet: a deep convolutional neural network for accurate seizure type classification and seizure detection. arXiv preprint arXiv:1903.03232

  27. Pramod S, Page A, Mohsenin T, Oates T (2014) Detecting epileptic seizures from EEG data using neural networks. arXiv preprint arXiv:1412.6502

  28. Li X, Zhang P, Song D, Yu G, Hou Y, Hu B (2015) EEG based emotion identification using unsupervised deep feature learning. In: SIGIR2015 workshop on neuro-physiological methods in IR research. Santiago, Chile

  29. Du B, Xiong W, Wu J, Zhang L, Zhang L, Tao D (2016) Stacked convolutional denoising auto-encoders for feature representation. IEEE Trans Cybern 47(4):1017–1027

    Article  PubMed  Google Scholar 

  30. Tsiouris ΚΜ, Pezoulas VC, Zervakis M, Konitsiotis S, Koutsouris DD, Fotiadis DI (2018) A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med 99:24–37

    Article  PubMed  Google Scholar 

  31. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313:504–507

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  32. Wen T, Zhang Z (2018) Deep convolution neural network and autoencoders-based unsupervised feature learning of EEG signals. IEEE Access 6:25399–25410

    Article  Google Scholar 

  33. Sun K, Zhang J, Zhang C, Hu J (2017) Generalized extreme learning machine autoencoder and a new deep neural network. Neurocomputing 230:374–381

    Article  Google Scholar 

  34. Wang Y, Xie Z, Xu K, Dou Y, Lei Y (2016) An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning. Neurocomputing 174:988–998

    Article  Google Scholar 

  35. Lu D, Triesch J (2019) Residual deep convolutional neural network for eeg signal classification in epilepsy. arXiv preprint arXiv:1903.08100

  36. Sharma M, Dhere A, Pachori RB, Acharya UR (2017) An automatic detection of focal EEG signals using new class of time-frequency localized orthogonal wavelet filter banks. Knowl-Based Syst 118:217–227

    Article  Google Scholar 

  37. Sharma R, Kumar M, Pachori RB, Acharya UR (2017) Decision support system for focal EEG signals using tunable-Q wavelet transform. J Comput Sci 20:52–60

    Article  Google Scholar 

  38. Gupta V, Priya T, Yadav AK, Pachori RB, Acharya UR (2017) Automated detection of focal EEG signals using features extracted from flexible analytic wavelet transform. Pattern Recogn Lett 94:180–188

    Article  ADS  Google Scholar 

  39. Sriraam N, Raghu S (2017) “Classification of focal and non focal epileptic seizures using multifeatures and SVM classifier. J Med Syst 41:160

    Article  CAS  PubMed  Google Scholar 

  40. Acharya UR, Hagiwara Y, Deshpande SN, Suren S, Koh JEW, Oh SL, Lim CM (2019) Characterization of focal EEG signals: a review. Futur Gener Comput Syst 91:290–299

    Article  Google Scholar 

  41. Arunkumar N, Ramkumar K, Venkatraman V, Abdulhay E, Fernandes SL, Kadry S, Segal S (2017) Classification of focal and non focal EEG using entropies. Pattern Recogn Lett 94:112–117

    Article  ADS  Google Scholar 

  42. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Article  Google Scholar 

  43. Heidari AA, Abbaspour RA, Jordehi AR (2017) An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput Appl 28(1):57–85

    Article  Google Scholar 

  44. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64(6):061907

    Article  ADS  CAS  Google Scholar 

  45. Andrzejak RG, Schindler K, Rummel C (2012) Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys Rev E 86(4):046206

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Kishore Dash.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with any person or organisation for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix:

A. Data normalisation between [0, 1].

$$ d_{{\text{n}}} = \frac{{d - d_{{{\text{min}}}} }}{{d_{\max } - d_{{{\text{min}}}} }} $$
(A.1)

where \(d_{{\text{n}}}\) = normalised EEG data, d = EEG data.

\(d_{{{\text{min}}}}\) = minimum value of EEG data.

\(d_{\max }\) = maximum value of EEG data.

B. Performance evaluation

Classification accuracy (AC), sensitivity (SN), and specificity (SP) are defined below:

$$ {\text{AC}} = \frac{{P_{{\text{T}}} + N_{{\text{T}}} }}{{P_{{\text{T}}} + N_{{\text{T}}} + P_{{\text{F}}} + N_{{\text{F}}} }} \times 100\% $$
(B.1)
$$ {\text{SN}} = \frac{{P_{{\text{T}}} }}{{P_{{\text{T}}} + N_{{\text{F}}} }} \times 100\% $$
(B.2)
$$ {\text{SP}} = \frac{{P_{{\text{T}}} }}{{P_{{\text{T}}} + P_{{\text{F}}} }} \times 100\% $$
(B.3)

where \(P_{{\text{T}}}\) = True Positive,\(N_{{\text{T}}}\) = True Negative, \(P_{{\text{F}}}\) = False Positive, and \(N_{{\text{F}}}\) = False Negative.

C. Feature extraction

The details of statistical features are described below:

$$ {\text{Energy:}}\;E = \sum\limits_{I = 1}^{N} ( d_{i} )^{2} $$
(C.1)
$$ {\text{Entropy:}}\,{\text{En}} = - \sum\limits_{I = 1}^{N} {p(} d_{i} )\log_{b} p(d_{i} ) $$
(C.2)
$$ {\text{Standard Deviation}}:{\text{St}} = \sqrt {\frac{{\sum\limits_{I = 1}^{N} {} (d_{i} - \mu )^{2} }}{N}} ,\;\mu = \frac{1}{N}\sum\limits_{I = 1}^{N} {d_{i} } $$
(C.3)
$$ {\text{Variance}}:{\text{Va}} = \frac{1}{N}\sum\limits_{I = 1}^{N} {(d_{i} } - \mu )^{2} $$
(C.4)
$$ {\text{Kurtosis}}:{\text{Ku}} = \frac{1}{N}\sum\limits_{I = 1}^{N} {\left( {\frac{{d_{i} - \mu }}{{{\text{St}}}}} \right)^{4} } $$
(C.5)
$$ {\text{Skewness}}:\;{\text{Sk}} = \frac{1}{N}\sum\limits_{I = 1}^{N} {\left( {\frac{{d_{i} - \mu }}{{{\text{St}}}}} \right)^{3} } $$
(C.5)

\(d_{i}\) = ith input data, \(N\) = Total number of samples, \(p(d_{i} )\) = probability of input data, and \(\mu\) = mean value of input data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parija, S., Dash, P.K. & Bisoi, R. Epileptic EEG signal classification using an improved VMD-based convolutional stacked autoencoder. Pattern Anal Applic 27, 9 (2024). https://doi.org/10.1007/s10044-024-01221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10044-024-01221-y

Keywords

Navigation