Skip to main content
Log in

Multiscale traveling: crossing the boundary between space and scale

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Adding multiscale interaction capabilities to 3D virtual environments may permit work with huge virtual worlds that might otherwise be too large to manage. Multiscale technology has shown potential to support user interactions. This paper reports an experimental study of two multiscale traveling techniques. Our results show that while allowing a flexible control on travel speed and accuracy is beneficial, directly traversing the space-scale could be a challenge for users, probably due to difficulties in perceiving scalable virtual space and executing scaling operations. The results suggest that more research is needed to improve the understanding of the coupling of space and scale in multiscale user interface and to harness the full potentials of multiscale traveling techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bagrow L (1985) History of cartography. Precedent Publishers, Chicago

    Google Scholar 

  • Barkowsky T, Freksa C (1997) Cognitive requirements on making and interpreting maps. In: Hirtle S, Frank A (eds) Spatial information theory: a theoretical basis for GIS. Proceedings of COSIT 97. Springer, Berlin, pp 347–361

    Chapter  Google Scholar 

  • Bederson B, Hollan J (1994) Pad++: a zooming graphical interface for exploring alternate interface physics. In: Proceedings of the ACM symposium of user interface software and technology (UIST ’94), pp 17–26

  • Bell S (2002) Spatial cognition and scale: a child’s perspective. J Environ Psychol 22(1–2):9–27

    Article  Google Scholar 

  • Benford S, Fahlén L, Bowers J, Fahlén L (1994) Managing mutual awareness in collaborative virtual environments, virtual reality software & technology. In: Proceedings of the VRST ’94 Conference, pp 223–236

  • Bier EA (1986) Skitters and jacks: interactive 3-D positioning tools. In: 1986 Workshop on interactive 3-D graphics, pp 183–196

  • Bowman D, Koller D, Hodges L (1997) Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques. In: Proceedings of the virtual reality annual international symposium, pp 45–52

  • Combs T, Bederson BB (1999) Does zooming improve image browsing? In: Proceedings of the fourth ACM international conference on digital libraries, pp 130–137

  • Darken RP, Sibert J (1996) Navigating large virtual spaces. Int J Hum Comput Interact 8(1):49–71

    Article  Google Scholar 

  • Downs R, Stea D (1973) Image and environment: cognitive mapping and spatial behavior. Aldine, Chicago

    Google Scholar 

  • Durlach N, Allen G, Darken R, Garnett RL, Loomis J, Templeman J, von Wiegand TE (2000) Virtual environments and the enhancement of spatial behaviour: towards a comprehensive research agenda. Presence Teleoper Virtual Environ 6:593–615

    Google Scholar 

  • Elvins T, Nadeau D, Kirsh D (1997) Worldlets—3-D thumbnails for wayfinding in virtual environments. In: Proceedings of the ACM symposium of user interface software and technology (UIST ’97), pp 21–30

  • Evans GW, Pezdek K (1980) Cognitive mapping: knowledge of real-world distance and location information. J Exp Psychol Hum Learn Mem 6(1):13–24

    Article  Google Scholar 

  • Furnas GW, Bederson BB (1995) Space-scale diagrams: understanding multiscale interfaces papers: navigating and scaling in 2-D space. In: Proceedings of the ACM conference on human factors in computing system (CHI ’95), pp 234–241

  • Ghosh P, Shneiderman B (1999) Zoom-only vs. overview-detail pair: a study in browsing techniques as applied to patient histories. University of Maryland Technical Report CS-TR-4028

  • Gibson JJ (1979) The ecological approach to visual perception. Mifflin, Houghton

    Google Scholar 

  • Golledge R (1999) Human wayfinding and cognitive maps. In: Golledge R (ed) Wayfinding behavior: cognitive maps and other spatial processes. Johns Hopkins University Press, Baltimore, pp 5–45

    Google Scholar 

  • Guiard Y, Beaudouin-Lafon M, Mottet D (1999) Navigation as multiscale pointing: extending Fitts’ model to very high precision tasks. In: Proceedings of the ACM conference on human factors in computing system (CHI ’99), pp 450–457

  • Hanson A, Wernert E, Hughes S (1997) Constrained navigation environments. In: Scientific visualization: Dagstuhl ‘97 Proceedings, pp 95–104

  • Hart R, Moore G (1973) The development of spatial cognition: a review. In: Stea B, Downs R (eds) Image and environment. University of Chicago Press, Chicago, pp 226–234

    Google Scholar 

  • Hirtle SC, Hudson JH (1991) The acquisition of spatial knowledge. J Environ Psychol 11:335–345

    Article  Google Scholar 

  • Hornbæk K, Bederson B, Plaisant C (2002) Navigation patterns and usability of zoomable user interfaces with and without overview. Trans Comput Hum Interact 9:362–389

    Article  Google Scholar 

  • Huff M, Schwan S, Garsoffky B (2007) The spatial representation of dynamic scenes—an integrative approach. In: Barkowsky T, Knauff M, Ligozat G, Montello DR (eds) Lecture notes in artificial intelligence. Spatial cognition V: reasoning, action, interaction, pp 140–155

  • Interrante V, O’Rourke E, Gray L, Anderson L, Ries B (2007) A Quantitative assessment of the impact on spatial understanding of exploring a complex immersive virtual environment using augmented real walking versus flying. In: Proceedings of the 13th eurographics symposium on virtual environments, pp 75–78

  • Interrante V, Ries B, Anderson L (2007) Seven league boots: a new metaphor for augmented locomotion through large-scale immersive virtual environments. In: IEEE symposium on 3-D user interfaces, pp 167–170

  • Jul S, Furnas GW (1998) Critical zones in desert fog: aids to multiscale. In: Proceedings of the ACM symposium of user interface software and technology (UIST ’98), pp 97–106

  • Kaufman L (1974) Sight and mind. Oxford University Press, New York

  • Kopper R, Ni T, Bowman DA, Pinho M (2006) Design and evaluation of navigation techniques for multiscale virtual environments. In: Proceedings of the IEEE conference on virtual reality, pp 175–182

  • Kosslyn SM, Ball TM, Reiser BJ (1978) Visual images preserve metric spatial information: evidence from studies of image scanning. J Exp Psychol Hum Percept Perform 4:47–60

    Article  Google Scholar 

  • LaViola J, Feliz D, Keefe D, Zeleznick R (2001) Hands-free multi-scale navigation in virtual environments. In: Proceedings of the symposium on interactive 3-D graphics, pp 9–15

  • Leigh J, Johnson A (1996) Supporting transcontinental collaborative work in persistent virtual environments. In: IEEE Comput Graph Appl 16(4):47–51

  • Leshed G, Velden T, Rieger O, Kot B, Sengers P (2008) In-car GPS navigation: engagement with and disengagement from the environment. In: Proceeding of the ACM conference on human factors in computing systems, pp 1675–1684

  • Liben LS (2001) Thinking through maps. In: Gattis M (ed) Spatial schemas and abstract thought. MIT Press, Cambridge, pp 44–77

    Google Scholar 

  • Lynch K (1960) Image of the city. MIT Press, Cambridge

    Google Scholar 

  • Mackinlay J, Card S, Roberston G (1990) Rapid controlled movement through a virtual 3-D workspace. Comput Graph 24(4):171–166

    Google Scholar 

  • Mapes DP, Moshell JM (1995) A two-handed interface for object manipulation in virtual environments. Presence Teleoper Virtual Environ 4(4):403–416

    Google Scholar 

  • McNamara TP, Hardy JK, Hirtle SC (1989) Subjective hierarchies in spatial memory. J Exp Psychol Learn Mem Cogn 15:211–227

    Article  Google Scholar 

  • Mine M (1995) Virtual environment interaction techniques. UNC Chapel Hill computer science technical report TR95-018

  • Mine M, Brooks F, Squin C (1997) Moving objects in space: exploiting proprioception in virtual-environment interaction. In: Proceedings of ACM SIGGRAPH ’97, pp 19–26

  • Montello DR (2001) Spatial cognition. In: Smelser N, Baltes P (eds) International encyclopedia of the social & behavioral sciences. Pergamon Press, Oxford, pp 14771–14775

    Google Scholar 

  • Nielson GM, Olsen DR (1986) Direct manipulation techniques for 3-d objects using 2-D locator devices. In: 1986 Workshop on interactive 3-D graphics, pp 175–182

  • Páez LB, da Silva-Fh JB, Marchionini G (1996) Disorientation in electronic environments: a study of hypertext and continuous zooming interfaces. In: Proceedings of ASIS’96, pp 58–66

  • Parush A, Ahuvia S, Erev I (2007) Degradation in spatial knowledge acquisition when using automatic navigation systems. In: Winter S, Duckham M, Kulik L, Kuipers B (eds) Spatial information theory. Melbourne, pp 238–254

  • Passini R (1984) Spatial representation: a wayfinding perspective. J Environ Psychol 4:153–164

    Article  Google Scholar 

  • Perlin K, Fox D (1993) Pad: an alternative approach to the computer interface. In: Proceedings of the ACM SIGGRAPH ’93, pp 57–64

  • Piaget J, Inhelder B (1967) The child’s conception of space. Norton, New York

    Google Scholar 

  • Pierce J, Pausch R (2004) Navigation with place representations and visible landmarks. In: Proceedings of VRST 2004, pp 173–180

  • Plumlee MD, Ware C (2006) Zooming versus multiple window interfaces: cognitive costs of visual comparisons. ACM Trans Comput Hum Interact 13(2):179–209

    Article  Google Scholar 

  • Presson C, Montello D (1988) Points of reference in spatial cognition: stalking the elusive landmark. Br J Develop Psychol 6:378–381

    Google Scholar 

  • Presson CC, DeLange N, Hazelrigg MD (1989) Orientation specificity in spatial memory: what makes a path different from a map of the path? J Exp Psychol Learn Mem Cogn 15:887–897

    Article  Google Scholar 

  • Rieser JJ, Pick HL, Ashmead DH, Garing AE (1995) Calibration of human locomotion and models of perceptual-motor organization. J Exp Psychol Hum Percept Perform 21:480–497

    Article  Google Scholar 

  • Robinett W, Holloway R (1992) Implementation of flying, scaling and grabbing in virtual worlds. In: Proceedings of the symposium on interactive 3-D graphics, pp 189–192

  • Roskos-Ewoldsen B, McNamara TP, Shelton AL, Carr W (1998) Mental representations of large and small spatial layouts are orientation dependent. J Exp Psychol Learn Mem Cogn 24:215–226

    Google Scholar 

  • Ruddle R, Payne S, Jones D (1997) Navigating buildings in “desk-top” virtual environments: experimental investigations using extended navigational experience. J Exp Psychol Appl 3(2):143–159

    Article  Google Scholar 

  • Rump B, McNamara TP (2007) Updating in models of spatial memory. In: Barkowsky T, Knauff M, Montello DR (eds) Lecture notes in artificial intelligence: spatial cognition V. pp 249–269

  • Schaffer D, Zuo Z, Greenberg S, Bartram L, Dill J, Dubs S, Roseman M (1996) Navigating hierarchically clustered networks through fisheye and full-zoom methods. ACM Trans Comput Hum Interact 3(2):162–188

    Article  Google Scholar 

  • Stevens A, Coupe P (1978) Distortions in judged spatial relations. Cogn Psychol 10:422–437

    Article  Google Scholar 

  • Stoakley R, Conway M, Pausch R (1995) Virtual reality on a wim: interactive worlds in miniature. In: Proceedings of the ACM conference on human factors in computing system (CHI ’95), pp 265–272

  • Tan D, Robertson G, Czerwinski M (2001) Exploring 3-D navigation: combining speed-coupled flying with orbiting. In: Proceedings of the ACM conference on human factors in computing system (CHI ’2001), pp 418–425

  • Thorndyke PW, Golding SE (1983) Spatial orientation: theory, research, and application. In: Spatial learning and reasoning skill, pp 195–217

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    Article  Google Scholar 

  • Tversky B (1993) Cognitive maps, cognitive collages, and spatial mental models. In: Frank A, Campari I (eds) Spatial information theory: a theoretical basis for GIS. Proceedings of COSIT’93. Springer, Germany, pp 14–24

    Google Scholar 

  • Vinson NG (1999). Design guidelines for landmarks to support navigation in virtual environments. In: Proceedings of the ACM conference on human factors in computing system (CHI ’99), pp 278–285

  • Ware C, Fleet D (1997) Context sensitive flying interface. In: Proceedings of symposium on interactive 3-D graphics, pp 127–130

  • Williams B, Narasimham G, McNamara TP, Carr TH, Rieser JJ, Bodenheimer B (2006) Updating orientation in large virtual environments using scaled translational gain. In: Proceedings of the 3rd symposium on applied perception in graphics and visualization, pp 21–28

  • Wilson PN, Foreman N, Tlauka M (1997) Transfer of spatial information from a virtual to a real environment. Hum Factors 39(4):526–531

    Article  Google Scholar 

  • Witmer B, Kline P (1998) Judging perceived and traversed distance in virtual environments. Presence Teleoper Virtual Environ 7:144–167

    Article  Google Scholar 

  • Witmer BG, Bailey JH, Knerr BW, Parsons KC (1996) Virtual spaces and real world places: transfer of route knowledge. Int J Hum Comput Stud 45:413–428

    Article  Google Scholar 

  • Zhang X (2008) A multiscale progressive model on virtual navigation. Int J Hum Comput Stud 66(4):243–256

    Article  Google Scholar 

  • Zhang X, Furnas GW (2002) Social interaction in multiscale CVEs. In: Proceedings of the ACM conference on collaborative virtual environments, pp 31–38

  • Zhang X, Furnas GW (2005) mCVEs: using cross-scale collaboration to support user interaction with multiscale structures. Presence Teleoper Virtual Environ 14(1):31–46

    Article  Google Scholar 

Download references

Acknowledgments

The author likes to thank George Furnas for his help on this research and the anonymous reviewers for their constructive suggestions and comments. This research was supported, in part, by Microsoft Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong (Luke) Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X. Multiscale traveling: crossing the boundary between space and scale. Virtual Reality 13, 101–115 (2009). https://doi.org/10.1007/s10055-009-0114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-009-0114-5

Keywords

Navigation