Skip to main content
Log in

Locating virtual sound sources at arbitrary distances in real-time binaural reproduction

  • S.I. : Spatial Sound
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

A real-time system for sound spatialization via headphones is presented. Conventional headphone spatialization techniques effectively place sources on the surface of a virtual sphere around the listener. In the new system, sources can be spatialized at different distances from a listener by interpolating head-related impulse responses (HRIRs) measured between 20 and 160 cm. These HRIRs are stored in different databases depending on the audio sampling rate. To ease the real-time constraints, users can choose the number of HRIR taps used in the convolution, and an alternative interpolation technique (simplex interpolation) was implemented instead of trilinear interpolation. Subjective tests showed that such simplifications yield satisfactory spatialization for some angles and distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. www.papasangre.com.

  2. http://puredata.info.

  3. http://opensoundcontrol.org.

  4. http://docs.unity3d.com/Manual/AudioSpatializerSDK.html.

References

  • Algazi V, Duda R, Thompson D, Avendano C (2001) The cipic hrtf database. In: Proceedings of Ieee Workshop on the applications of signal processing to audio and acoustics, pp 99–102. http://earlab.bu.edu/databases/collections/cipic

  • Apple Inc. (2015) iTunes connect developer guide. Apple Inc., Cupertino, CA (USA). https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/iTunesConnect_Guide.pdf

  • Ashmead DH, Leroy D, Odom RD (1990) Perception of the relative distances of nearby sound sources. Percept Psychophys 47(4):326–331

    Article  Google Scholar 

  • Begault DR, Erbe T (1994) Multichannel spatial auditory display for speech communications. J Audio Eng Soc 42(10):819–826

    Google Scholar 

  • Bellotti F, Berta R, De Gloria A, Margarone M (2002) Using 3D sound to improve the effectiveness of the advanced driver assistance systems. Pers Ubiquitous Comput 6(3):155–163

    Article  Google Scholar 

  • Berkhout AJ, de Vries D, Vogel P (1993) Acoustic control by wave field synthesis. J Acoust Soc Am 93:2764–2778

    Article  Google Scholar 

  • Blauert J (1997) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambridge

    Google Scholar 

  • Blauert J, Rabenstein R (2012) Providing surround sound with loudspeakers: a synopsis of current methods. Arch Acoust 37(1):5–18

    Article  Google Scholar 

  • Bronkhorst AW, Houtgast T (1999) Auditory distance perception in rooms. Nature 397(6719):517–520

    Article  Google Scholar 

  • Brüel PV, Frederiksen E, Rasmussen G (1962) Artificial ears for the calibration of earphones of the external type. Technical Report 1, Brüel and Kjær, Nærum, Denmark

  • Chen L, Hu H, Wu Z (2008) Head-related impulse response interpolation in virtual sound system. Int Conf Nat Comput 6:162–166

    Google Scholar 

  • Cohen M, Villegas J (2015) Applications of audio augmented reality. Wearware, everyware, anyware, and awareware, chapter 13. In: Fundamentals of wearable computers and augmented reality, 2nd edn. CRC Press, Boca Raton, pp 309–329

  • Doukhan D, Sédès A (2009) CW\_binaural\(^{\sim }\): a binaural synthesis external for pure data. In: Proceedings of 3 Pure-data International Convention

  • Estrella J (2010) On the extraction of interaural time differences from binaural room impulse responses. Master’s thesis, Technische Universität Berlin

  • Gamper H (2014) Enabling technologies for audio augmented reality systems. PhD thesis, Aalto University

  • Gardner WG (1995) Transaural 3-d audio. Technical report, MIT Media Laboratory, Perceptual Computing Section

  • Gardner WG (1998) 3-D audio using loudspeakers. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Gardner WG, Martin KD (1995) Hrtf measurements of a kemar. J Acoust. Soc Am 97(6):3907–3908

    Article  Google Scholar 

  • Geier M, Spors S (2012) Spatial audio with the soundscape renderer. In: 27 Tonmeistertagung–VDT International Convention

  • Gerzon MA (1973) Periphony: with-height sound reproduction. J Audio Eng Soc 21(1):2–10

    Google Scholar 

  • Grosjean P, Denis K (2013) mlearning: Machine learning algorithms with unified interface and confusion matrices. R package version 1.0-0

  • Hawksford MO (1997) Digital signal processing tools for loudspeaker evaluation and discrete-time crossover design. J Audio Eng Soc 45(1/2):37–62

    Google Scholar 

  • Hemingway P (2002) n-Simplex interpolation. Technical report, Hewlett-Packard Laboratories Bristol

  • Hosoe S, Nishino T, Itou K, Takeda K (2005) Measurement of head-related transfer functions in the proximal region. Forum Acusticum, pp 2539–2542

  • Ikei Y, Yamazaki H, Hirota K, Hirose M (2006) vCocktail: multiplexed-voice menu presentation method for wearable computers. In: Proceedings of Virtual Reality Conference, pp 183–190

  • Jot J-M, Larcher V, Warusfel O (1995) Digital signal processing issues in the context of binaural and transaural stereophony. In: Proceedings of 98 Audio Engineering Society Convention

  • Kan A, Jin C, van Schaik A (2009) A psychophysical evaluation of near-field head-related transfer functions synthesized using a distance variation function. J Acoust Soc Am 125(4):2233–2242

    Article  Google Scholar 

  • Kearney G, Gorzel M, Rice H, Boland F (2012) Distance perception in interactive virtual acoustic environments using first and higher order ambisonic sound fields. Acta Acust United Acust 98(1):61–71

    Article  Google Scholar 

  • Kim S, Ikeda M, Takahashi A, Ono Y, Martens WL (2009) Virtual ceiling speaker: elevating auditory imagery in a 5-channel reproduction. In: Audio Engineering Society Convention 127. Audio Engineering Society

  • Majdak P, Iwaya Y, Carpentier T, Nicol R, Parmentier M, Roginska A, Suzuki Y, Watanabe K, Wierstorf H, Ziegelwanger H et al. (2013) Spatially oriented format for acoustics: a data exchange format representing head-related transfer functions. In: Proceedings of 134 Audio Engineering Society Convention

  • Martens WL (2003) Perceptual evaluation of filters controlling source direction: customized and generalized hrtfs for binaural synthesis. Acoust Sci Technol 24(5):220–232

    Article  Google Scholar 

  • McGee R, Wright M (2011) Sound element spatializer. Master’s thesis, University of Michigan

  • McKinley RL, Ericson MA (1997) Binaural and spatial hearing in real and virtual environments, chapter. In: Flight demonstration of a 3-D auditory display. Lawrence Erlbaum Assoc., Inc., Mahwah, NJ, USA, pp 683–699

  • Murphy D, Neff F (2011) Game sound technology and player interaction: concepts and developments, chapter. In: Spatial sound for computer games and virtual reality. Information Science Reference, pp 287–312

  • Musil T, Noisternig M, Höldrich R (2005) A library for realtime 3D binaural sound reproduction in Pure Data (pd). In: Proceedings of International Conference on Digital Audio Effects

  • Nelson WT, Hettinger LJ, Cunningham JA, Brickman BJ, Haas MW, McKinley RL (1998) Effects of localized auditory information on visual target detection performance using a helmet-mounted display. Hum Factors J Hum Factors Ergon Soc 40(3):452–460

    Article  Google Scholar 

  • Pei S-C, Lin H-S (2006) Minimum-phase fir filter design using real cepstrum. IEEE Trans Circuits Syst II Exp Br 53(10):1113–1117

    Article  Google Scholar 

  • Peirce JW (2007) PsychoPy-psychophysics software in python. J Neurosci Methods 162(1–2):8–13

    Article  Google Scholar 

  • Penha R, Oliveira J (2013) Spatium, tools for sound spatialization. In: Proceedings of the Sound and Music Computing Conference

  • Pollow M, Nguyen K-V, Warusfel O, Carpentier T, Müller-Trapet M, Vorländer M, Noisternig M (2012) Calculation of head-related transfer functions for arbitrary field points using spherical harmonics decomposition. Acta Acust United Acust 98(1):72–82

    Article  Google Scholar 

  • Qu T, Xiao Z, Gong M, Huang Y, Li X, Wu X (2009) Distance-dependent head-related transfer functions measured with high spatial resolution using a spark gap. IEEE Trans Audio Speech Lang Process 17(6):1124–1132

    Article  Google Scholar 

  • Rothauser EH, Chapman WD, Guttman N, Silbiger HR, Hecker MHL, Urbanek GE, Nordby KS, Weinstock M (1969) Ieee recommended practice for speech quality measurements. IEEE Trans Audio Electroacoust 17(3):225–246

    Article  Google Scholar 

  • Sanuki W, Villegas J, Cohen M (2014) Spatial sound for mobile navigation systems. In: Proceedings of 136 Audio Engineering Society Convention

  • Schroeder MR (1961) Improved quasi-stereophony and “colorless” artificial reverberation. J Acoust Soc Am 33(8):1061–1064

    Article  Google Scholar 

  • Sèdes A, Guillot P, Paris E (2014) The HOA library, review and prospect. In: Proceedings of the joint ICMC-SMC Conference, pp 855–860

  • Smith J, Lee N (2008) Computational acoustic modeling with digital delay. Center for Computer Research in Music and Acoustics, Stanford University. https://ccrma.stanford.edu/realsimple/Delay/

  • Sodnik J, Sušnik R, Štular M, Tomažič S (2005) Spatial sound resolution of an interpolated hrir library. Appl Acoust 66(11):1219–1234

    Article  Google Scholar 

  • Spors S, Wierstorf H, Raake A, Melchior F, Frank M, Zotter F (2013) Spatial sound with loudspeakers and its perception: a review of the current state. Proc IEEE 101(9):1920–1938

    Article  Google Scholar 

  • Villegas J, Cohen M (2010a) “Gabriel”: geo-aware broadcasting for in-vehicle entertainment and larger safety. In: Proceedings of 135 Audio Engineering Society International Convention

  • Villegas, J. and Cohen, M. (2010b) Hrir ~: modulating range in headphone-reproduced spatial audio. In: Proceedings of 9 International Conference on VR Continuum and Its Applications in Industry

  • Villegas J, Cohen M (2013) Real-time head-related impulse response filtering with distance control. In: Proceedings of 135 Audio Engineering Society Convention

  • Warusfel O (2003) listen hrtf database. http://recherche.ircam.fr/equipes/salles/listen/

  • Wenzel EM, Foster SH (1993) Perceptual consequences of interpolating head-related transfer functions during spatial synthesis. In: Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp 102–105

  • Wierstorf H, Geier M, Spors S (2011) A free database of head related impulse response measurements in the horizontal plane with multiple distances. In: Proceedings of 130 Audio Engineering Society Convention

  • Wright M (2005) Open sound control: an enabling technology for musical networking. Organ Sound 10:193–200

    Article  Google Scholar 

  • Xiang P, Camargo D, Puckette M (2005) Experiments on spatial gestures in binaural sound display. In: Proceedings of 11 International Conference on Auditory Display

  • Zahorik P, Brungart DS, Bronkhorst AW (2005) Auditory distance perception in humans: a summary of past and present research. Acta Acust United Acust 91(3):409–420

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Competitive Research Funds (P-14) of the University of Aizu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Villegas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villegas, J. Locating virtual sound sources at arbitrary distances in real-time binaural reproduction. Virtual Reality 19, 201–212 (2015). https://doi.org/10.1007/s10055-015-0278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-015-0278-0

Keywords

Navigation