Skip to main content
Log in

A computational model of perceptual saliency for 3D objects in virtual environments

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

When giving directions to the location of an object, people typically use other attractive objects as reference, that is, reference objects. With the aim to select proper reference objects, useful for locating a target object within a virtual environment (VE), a computational model to identify perceptual saliency is presented. Based on the object’s features with the major stimulus for the human visual system, three basic features of a 3D object (i.e., color, size, and shape) are individually evaluated and then combined to get a degree of saliency for each 3D object in a virtual scenario. An experiment was conducted to evaluate the extent to which the proposed measure of saliency matches with the people’s subjective perception of saliency; the results showed a good performance of this computational model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Caduff D, Sabine T (2008) On the assessment of landmark salience for human navigation. Springer. Cognit Process 9(4):249–267

    Article  Google Scholar 

  • Choungourian A (1968) Color preferences and cultural variation. Percept Mot Skills 26(3_suppl):1203–1206

    Article  Google Scholar 

  • Connolly C, Fliess T (1997) A study of efficiency and accuracy in the transformation from RGB to CIELAB color space. IEEE Trans Image Process 6(7):1046–1048

    Article  Google Scholar 

  • de I’Eclairage CI (1978) Recommendations on uniform color spaces-color difference equations, psyhometric color terms. Supplement no. 2 to CIE publication no. 15 (E-1.3. 1) 1971. TC, 1–3

  • Frintrop S, Rome E, Christensen HI (2010) Computational visual attention systems and their cognitive foundations: a survey. ACM Trans Appl Percept (TAP) 7(1):6:1–6:39

    Google Scholar 

  • Gapp K-P (1995) Object localization: selection of optimal reference objects. In: International conference on spatial information theory. Springer, Berlin, Heidelberg, pp 519–536

  • Gevers T, Smeulders AWM (1999) Color-based object recognition. Elsevier. Pattern Recognit 32(3):453–464

    Article  Google Scholar 

  • Guo C, Ma Q, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. In: Conference on vision and pattern recognition. IEEE, pp 1–8

  • Hoffman DD, Singh M (1997) Salience of visual parts. Elsevier. Cognition 68(1):29–78

    Article  Google Scholar 

  • Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: Computer vision and pattern recognition. IEEE conference on. IEEE Minneapolis, MN, pp 1–8

  • Itti L (2006) Quantitative modelling of perceptual salience at human eye position. Taylor & Francis Group. Psychology Press. Visual Cognit 14(4–8):959–984

    Article  Google Scholar 

  • Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scence analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  • Ju R, Ge L, Geng W, Ren T, Wu G (2014) Depth saliency based on anisotropic center-surround difference. In: Image processing (ICIP), 2014 IEEE international conference on. IEEE, pp 1115–1119

  • Klippel A, Winter S (2005) Structural salience of landmarks for route directions. In: Cohn G, Mark M (eds) Spatial information theory. Springer, Ellicottville, pp 347–362

    Chapter  Google Scholar 

  • Lara G, De Antonio A, Peña A (2016) A computational measure of saliency of the shape of 3D objects. In: Mejia J, Muñoz M, Rocha Á, Calvo-Manzano J (eds) Trends and applications in software engineering. Springer, Cham, pp 235–245

    Chapter  Google Scholar 

  • Li J, Levine M, An X, He H (2011) Saliency detection based on frequency and spatial domain analysis. In: Hoey J, McKenna S, Trucco E (eds) Proceedings of the British machine vision conference. BMVC Press

  • Li J, Levine MD, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35(4):996–1010

    Article  Google Scholar 

  • López F, Valiente JM, Baldrich R, Vanrell M (2005) Fast surface grading using color statistics in the CIE Lab space. In: Iberian conference on pattern recognition and image analysis (LNCS 3523), Springer, Berlin, Heidelberg, vol 2, pp 666–673

  • Mangold R (1986) Sensorische Faktoren Beim Verstehen Überspezifizierter Objektbenennungen. Peter Lang, Frankfurt

    Google Scholar 

  • Oliva A, Torralba A, Castelhano MS, Henderson JM (2003) Top-dow control of visual attention in object detection. In: Image proceedings, 2003. icip 2003. Proceedings. 2003 international conference on, vol 1, pp 1–253

  • Raubal M, Winter S (2002) Enriching wayfinding instructions with local landmarks. In: Egenhofer MJ, Mark DM (eds) International conference on geographic information science, vol 2478. Springer, Berlin, Heidelberg, Boulder, CO, USA, pp 243–259

  • Röser F, Hamburger K, Knauff M (2011) The Giessen virtual environment laboratory: human wayfinding and landmark salience Springer-Verlag. Cognit Process 12(2):209–214

    Article  Google Scholar 

  • Röser F, Hamburger K, Krumnack A, Knauff M (2012) The structural salience of landmarks: results from an on-line study and a virtual environment experiment. Taylor & Francis Group. J Spat Sci 57(1):37–50

    Article  Google Scholar 

  • Röser F, Krumnack A, Hamburger K (2013) The influence of perceptual and structural salience. In: CogSci, pp 3315–3320

  • Rossel RV, Minasny B, Roudier P, McBratney AB (2006) Colour space models for soil science. Elsevier. Geoderma 133(3):320–337

    Article  Google Scholar 

  • Saleh A, Khalil M, Wahdan A-M (2003) An adaptive image watermarking scheme for color images using S-CIELAB. In: Circuits and systems, 2003 IEEE 46th Midwest symposium, vol 3. IEEE, pp 1575–1578

  • Sampedro MJ, Blanco M, Ponte D, Leirós LI (2010) Saliencia Perceptiva y Atención. La Atención (VI). Un enfoque pluridisciplinar, pp 91–103

  • Shilane P, Min P, Kazhdan M, Furkhouser T (2004) The Princeton shape benchmark. In: Shape modeling applications, 2004. Proceeding. IEEE Washington, DC, USA, pp 167–178

  • Singh S (2006) Impact of color on marketing. Manag Decis 44(6):783–789

    Article  Google Scholar 

  • Song R, Liu Y, Martin RR, Rosin PL (2014) Mesh saliency via spectral processing. ACM Trans Graph (TOG) 33(1):6

    Article  MATH  Google Scholar 

  • Stoia L (2007) Noun phrase generation for situated dialogs. Ohio State University. Ph.D. thesis

  • Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view convulational neural networks for 3D shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945–953

  • Undurraga C, Mery D (2011) Improving tracking algorithms using saliency. In: César SM, Kim S-W (eds) Proceedings 16th Iberoamerican congress. Pattern recognition, vol 7042. Springer-Verlag, Berlin, Heidelberg, Chile, pp 141–148

  • Undurraga C, Mery D, Sucar SLE (2010) Modelo de Saliencia utilizando el descriptor de covarianza

  • Wu J, Shen X, Zhu W, Liu L (2013) Mesh saliency with global rarity. ELSEVIER. Graph Models 75(5):255–264

    Article  Google Scholar 

  • Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae, vol 8. Wiley, New York

    Google Scholar 

  • Yuan JC-C, Brewer JD, Monaco EA, Davis EL (2007) Defining a natural tooth color space based on a 3-dimensional shade system. J Prosthet Dent 98(2):110–119

    Article  Google Scholar 

  • Zhao Y, Liu Y, Zeng Z (2013) Using region-based saliency for 3D interest points detection. In: International conference on computer analysis of images and patterns. Springer, Berlin, Heidelberg, pp 108–116

Download references

Acknowledgements

Graciela Lara holds a PROMEP scholarship in partnership with the UDG (UDG-685), Mexico. We also thank the students Adrián Calle Murillo, Roberto Mendoza Vasquez, and Álvaro Iturmendi Muñoz for their help in the implementation of the metric and the experimental software application and materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Peña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, G., De Antonio, A. & Peña, A. A computational model of perceptual saliency for 3D objects in virtual environments. Virtual Reality 22, 221–234 (2018). https://doi.org/10.1007/s10055-017-0326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-017-0326-z

Keywords

Navigation