Skip to main content

Advertisement

Log in

Haptic-enabled virtual training in orthognathic surgery

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Orthognathic surgery (OGS) is a very complex surgical procedure aiming to correct a wide range of skeletal and dental irregularities, including jaws and teeth misalignments. It requires a precise pre-surgical planning and high surgical skills that are traditionally acquired through years of hands-on training in the operating room or in laboratory-based surgical practices using cadavers or models. Although modern engineering technologies have led to the development or computer-aided surgical procedures and systems, surgical training in OGS still relies on the traditional physical hands-on approach. This paper presents the results of an investigation carried out with the aim to evaluate the use of haptics and virtual reality technologies as an OGS training tool. Three case studies corresponding to cephalometry training, osteotomy training and surgery planning training were conducted. Participants comprised novices and experts in the area of OGS. Surgical skills, performance and confidence of trainees, in addition to reducing execution times and errors associated with the traditional OGS process, indicate that the haptic-enabled virtual reality approach is an effective training tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • AAOMS, American Association of Oral and Maxillofacial Surgeons (2019) Rosemont, IL, USA. https://www.aaoms.org/. Accessed 28 May 2019

  • Agus MG, Andrea Gobbetti Enrico, Gianluigui Zanetti, Zorcolo Antonio (2003) Adaptive techniques for real-time haptic and visual simulation of bone dissection. In: IEEE virtual reality proceedings. Los Angeles, CA, USA

  • Ahmad G, Yaser M, Kourosh Z, Sanju L, Dort Joseph C, Sutherland Garnette R (2017) Surgical skill assessment using motion quality and smoothness. J Surg Educ 74(2):295–305. https://doi.org/10.1016/j.jsurg.2016.10.006

    Article  Google Scholar 

  • Ahmed N, McVicar IH, Mitchell DA (2019) Simulation-based training in maxillofacial surgery: are we going to be left behind? Br J Oral Maxillofac Surg 57(1):67–71. https://doi.org/10.1016/j.bjoms.2018.11.009

    Article  Google Scholar 

  • Birbe J (2014) Planificación clásica en cirugía ortognática. Revista Española de Cirugía Oral y Maxilofacial 36(3):99–107

    Article  Google Scholar 

  • Bosc R, Fitoussi A, Hersant B, Dao TH, Meningaud JP (2018) Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systematic review of the literature and a classification of relevant technologies. Int J Oral Maxillofac Surg. https://doi.org/10.1016/j.ijom.2018.09.010

    Article  Google Scholar 

  • Coles TR, Meglan D, John NW (2011) The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans Haptics 4(1):51–66

    Article  Google Scholar 

  • Dangxiao W, Yuru Z, Jianxia H, Yong W, Peijun L, Yonggang C, Hui Z (2012) iDental: a haptic-based dental simulator and its preliminary user evaluation. IEEE Trans Haptics 5(4):332–343

    Article  Google Scholar 

  • Gas BL, Buckarma EH, Mohan M, Pandian TK, Farley DR (2016) Objective assessment of general surgery residents followed by remediation. J Surg Educ 73(6):e71–e76. https://doi.org/10.1016/j.jsurg.2016.07.002.Epub

    Article  Google Scholar 

  • Grantcharov TP, Bardram L, Funch-Jensen P, Rosenberg J (2002) Assessment of technical surgical skills. Eur J Surg 168(3):139–144. https://doi.org/10.1080/110241502320127739

    Article  Google Scholar 

  • Jorge Z-S, Medellin-Castillo Hugo I, de la Garza-Camargo H, Lim T, Ritchie JM (2019) An integrated haptic-enabled virtual reality system for orthognathic surgery planning. Comput Methods Biomech Biomed Eng 22(5):499–517. https://doi.org/10.1080/10255842.2019.1566817

    Article  Google Scholar 

  • Lubek Joshua E (2019) The cost of training: oral and maxillofacial surgery at a crossroad. Oral Surg Oral Med Oral Pathol Oral Radiol 127(6):465–467. https://doi.org/10.1016/j.oooo.2019.03.001

    Article  Google Scholar 

  • Maliha Samantha G, Rodrigo D-S, Plana Natalie M, Andrea T, Flores Roberto L (2018) Haptic, physical, and web-based simulators: are they underused in maxillofacial surgery training? J Oral Maxillofac Surg 76(11):2424.e1–2424.e11. https://doi.org/10.1016/j.joms.2018.06.177

    Article  Google Scholar 

  • McCormick SU, Drew SJ (2011) Virtual model surgery for efficient planning and surgical performance. J Oral Maxillofac Surg 69(3):638–644

    Article  Google Scholar 

  • Medellin-Castillo HI, Govea-Valladares EH, Perez-Guerrero CN, Gil-Valladares J, Lim T, Ritchie JM (2016) The evaluation of a novel haptic-enabled virtual reality approach for computer-aided cephalometry. Comput Methods Programs Biomed 130:46–53

    Article  Google Scholar 

  • Mischkowski Robert A, Zinser Max J, Kübler Alexander C, Barbara K, Ulrich S, Zöller JE (2006) Application of an augmented reality tool for maxillary positioning in orthognathic surgery—a feasibility study. J Cranio-Maxillofac Surg 34(8):478–483. https://doi.org/10.1016/j.jcms.2006.07.862

    Article  Google Scholar 

  • Moorthy K, Munz Y, Sarker SK, Darzi A (2003) Objective assessment of technical skills in surgery. Br Med J 327(7422):1032–1037

    Article  Google Scholar 

  • Olsson P, Nysjo F, Hirsch JM, Carlbom IB (2013) A haptics-assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex trauma cases. Int J Comput Assist Radiol Surg 8(6):887–894

    Article  Google Scholar 

  • Panait L, Akkary E, Bell RL, Roberts KE, Dudrick SJ, Duffy AJ (2009) The role of haptic feedback in laparoscopic simulation training. J Surg Res 156(2):312–316

    Article  Google Scholar 

  • Posnick JC (2013) Principles and practice of orthognathic surgery. Elsevier Health Sciences, Missouri, USA

    Google Scholar 

  • Proffit WR, Fields HW Jr, Sarver DM (2006) Contemporary orthodontics (chapter 19: Combined Surgical and Orthodontic Treatment), 4th edn. Elsevier Health Sciences, Missouri

    Google Scholar 

  • Pulijala Y, Ma M, Pears M, Peebles D, Ayoub A (2018) An innovative virtual reality training tool for orthognathic surgery. Int J Oral Maxillofac Surg 47(9):1199–1205. https://doi.org/10.1016/j.ijom.2018.01.005

    Article  Google Scholar 

  • Ranta John F, Aviles WA (1999) The virtual reality dental training system: simulating dental procedures for the purpose of training dental students using haptics. Proc Fourth PHANTOM Users Group Workshop 4:67–71

    Google Scholar 

  • Reznick RK, MacRae H (2006) Teaching surgical skills changes in the wind. N Engl J Med 355(25):2664–2669

    Article  Google Scholar 

  • Ross E, Samantha H, Stephanie H, Evans Martin J (2018) Flipped classrooms in training in maxillofacial surgery: preparation before the traditional didactic lecture? Br J Oral Maxillofac Surg 56(5):384–387. https://doi.org/10.1016/j.bjoms.2018.04.006

    Article  Google Scholar 

  • Van Hove PD, Tuijthof GJ, Verdaasdonk EG, Stassen LP, Dankelman J (2010) Objective assessment of technical surgical skills. Br J Surg 97(7):972–987

    Article  Google Scholar 

  • Vázquez-Mata G (2008) Realidad virtual y simulación en el entrenamiento de los estudiantes de medicina. Educación Médica 11:29–31

    Article  Google Scholar 

  • White SC, Pharoah MJ (2001) Oral radiology, principles and interpretation, 4th edn. Elsevier, Missouri, USA

    Google Scholar 

  • Xia P, Lopes AM, Restivo MT (2012) Virtual reality and haptics for dental surgery: a personal review. Vis Comput 29(5):433–447

    Article  Google Scholar 

  • Zinser Max J, Mischkowski Robert A, Timo D, Thamm Oliver C, Daniel R, Zöller Joachim E (2013) Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display. Br J Oral Maxillofac Surg 51(8):827–833. https://doi.org/10.1016/j.bjoms.2013.06.014

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by CONACYT (National Science and Technology Council of Mexico), research Grant CB-2010-01-154430. Acknowledgments are also given to the PRODEP and FAI programs from SEP and UASLP, respectively, for the supplementary financial support. This work was also partially supported by the EU Beaconing Project (#687676).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo I. Medellin-Castillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medellin-Castillo, H.I., Zaragoza-Siqueiros, J., Govea-Valladares, E.H. et al. Haptic-enabled virtual training in orthognathic surgery. Virtual Reality 25, 53–67 (2021). https://doi.org/10.1007/s10055-020-00438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-020-00438-6

Keywords

Navigation