Skip to main content
Log in

Planar fiducial markers: a comparative study

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Fiducial markers are a cost-effective solution for solving labeling and monocular localization problems, making them valuable tools for augmented reality (AR), robot navigation, and 3D modeling applications. However, with the development of many marker detection systems in the last decade, it has become challenging for new users to determine which is best suited for their needs. This paper presents a qualitative and quantitative evaluation of the most relevant marker systems. We analyze the available alternatives in the literature, describe their differences and limitations, and conduct detailed experiments to compare them in terms of sensitivity, specificity, accuracy, computational cost, and performance under occlusion. To our knowledge, this study provides the most comprehensive and updated comparison of fiducial markers. In the Conclusion section, we offer recommendations on which method to use based on the application requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. https://developers.google.com/ar [last access 09/07/2022].

  2. https://developer.apple.com/augmented-reality/ [last access 09/07/2022].

  3. https://docs.opencv.org/4.x/de/dc3/classcv_1_1QRCodeDetector.html [last access 09/07/2022].

  4. https://docs.opencv.org/4.x/de/dc3/classcv_1_1QRCodeDetector.html [last access 09/07/2022].

  5. http://www.arreverie.com/blogs/getting-started-with-artoolkit-unity-plugin/ [last access 09/07/2022].

  6. https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html [last access 03/01/2023].

  7. https://developer.vuforia.com/ [last access 09/07/2022].

  8. https://tinyurl.com/2nm5z4b3 [last access 09/07/2022].

References

  • Akinlar Cuneyt, Topal Cihan (2012) Edpf: a real-time parameter-free edge segment detector with a false detection control. Int J Pattern Recogn Artif Intell 26(01):1255002

    Article  MathSciNet  Google Scholar 

  • Atcheson B, Heide F, Heidrich W (2010) CALTag: High Precision Fiducial Markers for Camera Calibration. In R Koch, A Kolb, C Rezk-Salama, (eds) Vision, Modeling, and Visualization, pp 41–48

  • Benligiray Burak, Topal Cihan, Akinlar Cuneyt (2019) Stag: a stable fiducial marker system. Image Vis Comput 89:158–169

    Article  Google Scholar 

  • Bergamasco F, Albarelli A, Rodolà E, Torsello A (2011) Rune-tag: a high accuracy fiducial marker with strong occlusion resilience. In 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 113–120

  • Bhargavapuri M, Shastry AK, Sinha H, Sahoo SR, Kothari M (2019) Vision-based autonomous tracking and landing of a fully-actuated rotorcraft. Control Eng Pract 89:113–129

    Article  Google Scholar 

  • Cai S, Wang X, Chiang FK (2014) A case study of augmented reality simulation system application in a chemistry course. Comput Hum Behav 37:31–40

    Article  Google Scholar 

  • Calvet L, Gurdjos P, Griwodz C, Gasparini S (2016) Detection and accurate localization of circular fiducials under highly challenging conditions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Čejka Jan, Bruno Fabio, Skarlatos Dimitrios, Liarokapis Fotis (2019) Detecting square markers in underwater environments. Remote Sens 11(4):459

    Article  Google Scholar 

  • Chen J, Sun C, Zhang A (2021) Autonomous navigation for adaptive unmanned underwater vehicles using fiducial markers. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9298–9304

  • Costanza E, Robinson J (2003) A region adjacency tree approach to the detection and design of fiducials. In 1st International Conference on Vision, Video, and Graphics (VVG), pp. 63–69

  • Dash AK, Behera SK, Dogra DP, Roy PP (2018) Designing of marker-based augmented reality learning environment for kids using convolutional neural network architecture. Displays 55:46–54

    Article  Google Scholar 

  • Davison AJ, Reid ID, Molton ND, Stasse O (2007) Monoslam: real-time single camera slam. IEEE Trans Pattern Anal Mach Intell 29(6):1052–1067

    Article  Google Scholar 

  • DeGol J, Bretl T, Hoiem D (2017) Chromatag: a colored marker and fast detection algorithm. In 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1481–1490

  • DeGol J, Bretl T, Hoiem D (2017) Chromatag: A colored marker and fast detection algorithm. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1472–1481

  • Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255

  • Denso Corp Toyota Central R &D Labs Inc (1994) Two-dimensional code. JP Patent JP2938338B2

  • El-Sheimy N, Li Y (2021) Indoor navigation: state of the art and future trends. Satell Navig 2(1):1–23

    Article  Google Scholar 

  • Engel Jakob, Koltun Vladlen, Cremers Daniel (2017) Direct sparse odometry. IEEE Trans Pattern Anal Mach Intell 40(3):611–625

    Article  Google Scholar 

  • Fiala M (2005) Artag, a fiducial marker system using digital techniques. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol 2, pp. 590–596

  • Fiala Mark (2010) Designing highly reliable fiducial markers. IEEE Trans Pattern Anal Mach Intell 32(7):1317–1324

    Article  Google Scholar 

  • Galvez-López D, Tardos JD (2012) Bags of binary words for fast place recognition in image sequences. IEEE Trans Robot 28(5):1188–1197

    Article  Google Scholar 

  • Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-Jiménez MJ (2014) Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit 47(6):2280–2292

    Article  Google Scholar 

  • Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Medina-Carnicer R (2016) Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recognit 51:481–491

    Article  Google Scholar 

  • Heng L, Choi B, Cui Z, Geppert M, Hu S, Kuan B, Liu P, Nguyen R, Yeo Y C, Geiger A, Lee G H, Pollefeys M, Sattler T (2019) Project autovision: localization and 3d scene perception for an autonomous vehicle with a multi-camera system. In 2019 International Conference on Robotics and Automation (ICRA), pp. 4695–4702

  • Iocolano M, Blacksburg S, Carpenter T, Repka M, Carbone S, Demircioglu G, Miccio M, Katz A, Haas J (2020) Prostate fiducial marker placement in patients on anticoagulation: feasibility prior to prostate SBRT. Front Oncol 10:203

    Article  Google Scholar 

  • Jurado D, Jurado JM, Ortega L, Feito FR (2021) Geuinf: real-time visualization of indoor facilities using mixed reality. Sensors 21(4):1123

    Article  Google Scholar 

  • Jurado-Rodríguez David, Muñoz-Salinas Rafael, Garrido-Jurado Sergio, Medina-Carnicer Rafael (2021) Design, detection, and tracking of customized fiducial markers. IEEE Access 9:140066–140078

    Article  Google Scholar 

  • Kalaitzakis M, Cain B, Carroll S, Ambrosi A, Whitehead C, Vitzilaios N (2021) Fiducial markers for pose estimation. J Intell Robot Syst 101:1–26

    Article  Google Scholar 

  • Kaltenbrunner M, Bencina R (2007) Reactivision: a computer-vision framework for table-based tangible interaction. In Proceedings of the 1st International Conference on Tangible and Embedded Interaction, pp 69–74

  • Kato H, Billinghurst M (1999) Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR’99), pp. 85–94

  • Kato I, Poupyrev H, Billinghurst M, Poupyrev I (2000) Artoolkit user manual, version 2.33. Human interface technology lab, University of Washington

  • Khattak S, Papachristos C, Alexis K (2018) Marker based thermal-inertial localization for aerial robots in obscurant filled environments. In Advances in Visual Computing, pp. 565–575

  • Klein G, Murray D (2007) Parallel tracking and mapping for small ar workspaces. In 2007 6th IEEE and ACM international symposium on mixed and augmented reality, pp. 225–234

  • Klopschitz M, Schmalstieg D (2007) Automatic reconstruction of widearea fiducial marker models. In ISMAR, pp. 1–4

  • Krogius M, Haggenmiller A, Olson E (2019) Flexible layouts for fiducial tags. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

  • Kunze L, Hawes N, Duckett T, Hanheide M, Krajník T (2018) Artificial intelligence for long-term robot autonomy: a survey. IEEE Robot Autom Lett 3(4):4023–4030

    Article  Google Scholar 

  • Kunz C, Genten V, Meißner P, Hein B (2019) Metric-based evaluation of fiducial markers for medical procedures. In B Fei and C Linte (eds) Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, vol 10951, pp 690 – 703

  • Lepetit V, Fua P (2005) Monocular model-based 3d tracking of rigid objects: a survey. Found Trends Comput Graph Vis 1(1):1–89

    Article  Google Scholar 

  • Li B, Shen H, Tse D (2012) An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check. IEEE Commun Lett 16(12):2044–2047

    Article  Google Scholar 

  • Marchand Éric, Spindler Fabien, Chaumette François (2005) Visp for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robot Autom Mag 12(4):40–52

    Article  Google Scholar 

  • Muñoz-Salinas R, Medina-Carnicer R (2020) Ucoslam: simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognit 101:107193

    Article  Google Scholar 

  • Muñoz-Salinas R, Marín-Jimenez MJ, Yeguas-Bolivar E, Medina-Carnicer R (2018) Mapping and localization from planar markers. Pattern Recognit 73:158–171

    Article  Google Scholar 

  • Muñoz-Salinas R, Marín-Jimenez MJ, Medina-Carnicer R (2019) Simultaneous localization and mapping with squared planar markers SPM-SLAM. Pattern Recognit 86:156–171

    Article  Google Scholar 

  • Muñoz-Salinas R, Marín-Jimenez MJ, Medina-Carnicer R (2019) Simultaneous localization and mapping with squared planar markers SPM-SLAM. Pattern Recognit 86:156–171

    Article  Google Scholar 

  • Mur-Artal R, Montiel JMM, Tardos JD (2015) Orb-slam: a versatile and accurate monocular slam system. IEEE Trans Robot 31(5):1147–1163

    Article  Google Scholar 

  • Nahangi M, Heins A, McCabe B, Schoellig A (2018) Automated localization of uavs in gps-denied indoor construction environments using fiducial markers. In J Teizer (ed) Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC), pp 88–94

  • Naimark L, Foxlin E (2002) Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker. In Proceedings International Symposium on Mixed and Augmented Reality, pp 27–36

  • Neunert M, Blösch M, Buchli J (2015) An open source, fiducial based, visual-inertial state estimation system. arXiv preprint arXiv:1507.02081

  • Olson E (2011) AprilTag: a robust and flexible visual fiducial system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp 3400–3407

  • Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) Ros: an open-source robot operating system. In ICRA workshop on open source software, vol 3, p 5

  • Reuter A, Seidel H-P, Ihrke I (2021) Blurtags: spatially varying psf estimation with out-of-focus patterns. In 20th International Conference on Computer Graphics, Visualization and Computer Vision 2012, WSCG’2012, pp 239–247

  • Rigter Lisanne S, Rijkmans Eva C, Akin Inderson, van den Ende Roy PJ, Kerkhof Ellen M, Ketelaars M, van Dieren J, Veenendaal Roeland A, van Triest B, Marijnen Corrie AM (2019) Eus-guided fiducial marker placement for radiotherapy in rectal cancer: feasibility of two placement strategies and four fiducial types. Endosc Int Open 7(11):E1357–E1364

    Article  Google Scholar 

  • Rohs M, Gfeller B (2004) Using camera-equipped mobile phones for interacting with real-world objects. In Advances in Pervasive Computing, pp 265–271

  • Romero-Ramirez Francisco J, Muñoz-Salinas Rafael, Medina-Carnicer Rafael (2018) Speeded up detection of squared fiducial markers. Image Vis Comput 76:38–47

    Article  Google Scholar 

  • Romero-Ramirez Francisco J, Muñoz-Salinas Rafael, Medina-Carnicer Rafael (2021) Tracking fiducial markers with discriminative correlation filters. Image Vis Comput 107:104094

    Article  Google Scholar 

  • Royer Eric, Lhuillier Maxime, Dhome Michel, Lavest Jean-Marc (2007) Monocular vision for mobile robot localization and autonomous navigation. Int J Comput Vis 74(3):237–260

    Article  MATH  Google Scholar 

  • Sagitov A, Shabalina K, Lavrenov R, Magid E (2017) Comparing fiducial marker systems in the presence of occlusion. In 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), pp 377–382

  • Sarmadi H, Muñoz-Salinas R, Álvaro Berbís M, Luna A, Medina-Carnicer R (2019) 3D reconstruction and alignment by consumer rgb-d sensors and fiducial planar markers for patient positioning in radiation therapy. Comput Methods Progr Biomed 180:105004

    Article  Google Scholar 

  • Sattar J, Bourque E, Giguere P, Dudek G (2007) Fourier tags: smoothly degradable fiducial markers for use in human-robot interaction. In Fourth Canadian Conference on Computer and Robot Vision (CRV’07), pp 165–174

  • Sattler T, Zhou Q, Pollefeys M, Leal-Taixe L (2019) Understanding the limitations of cnn-based absolute camera pose regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • Shaya K, Mavrinac A, Herrera JLA, Chen X (2012) A self-localization system with global error reduction and online map-building capabilities. In Intelligent Robotics and Applications, pp 13–22

  • Thomas G, Chien M, Tamar A, Ojea JA, Abbeel P (2018) Learning robotic assembly from cad. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp 3524–3531

  • Tiwari S (2016) An introduction to qr code technology. In 2016 International Conference on Information Technology (ICIT), pp 39–44

  • Torii A, Sivic J, Okutomi M, Pajdla T (2015) Visual place recognition with repetitive structures. IEEE Trans Pattern Anal Mach Intell 37(11):2346–2359

    Article  Google Scholar 

  • Tsoukalas A, Tzes A, Khorrami F (2018) Relative pose estimation of unmanned aerial systems. In 2018 26th Mediterranean Conference on Control and Automation (MED), pp 155–160

  • Wagner D, Schmalstieg D (2005) Artoolkitplus for pose tracking on mobile devices. In IEEE International Workshop on Haptic Audio Visual Environments and Their Applications, pp 147–152

  • Wang Ping, Guili Xu, Wang Zhengsheng, Cheng Yuehua (2018) An efficient solution to the perspective-three-point pose problem. Comput Vis Image Understand 166:81–87

    Article  Google Scholar 

  • Wang J, Olson E (2016) AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

  • Wilcoxon F (1992) Individual comparisons by ranking methods. In Breakthroughs in statistics, pp 196–202

  • Williams Brian, Cummins Mark, Neira José, Newman Paul, Reid Ian, Tardós Juan (2009) A comparison of loop closing techniques in monocular slam. Robot Auton Syst 57(12):1188–1197

    Article  Google Scholar 

  • Yamada T, Yairi T, Bener SH, Machida K (2009) A study on slam for indoor blimp with visual markers. In ICCAS-SICE, 2009, pp 647–652

  • Yang S, Yuang Y, Scherer S (2016) Pop-up SLAM. In International Conference on Intelligent Robots and Systems (IROS) pp 1222–1229

  • Yu G, Hu Y, Jingwen D (2021) TopoTag: a robust and scalable topological fiducial marker system. IEEE Trans Vis Comput Graph 27(9):3769–3780

    Article  Google Scholar 

  • Zhang Z, Hu Y, Yu G, Dai J (2022) DeepTag: a general framework for fiducial marker design and detection. IEEE Transactions on Pattern Analysis and Machine Intelligence

Download references

Funding

This project has been funded under the Industrial Ph.D. Program of Córdoba University with Seabery R &D, Project 1380047-F UCOFEDER-2021 of Andalusia and Project PID2019-103871GB-I00 of Spanish Ministry of Economy, Industry and Competitiveness, and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Muñoz-Salinas.

Ethics declarations

Conflict of interest

Some authors of this work are also the authors of the ArUco, ArUco3, and Jumarker libraries. Nevertheless, this has not affected the impartiality of the tests conducted. All systems and datasets employed in this paper are public so that other researchers can reproduce our results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurado-Rodriguez, D., Muñoz-Salinas, R., Garrido-Jurado, S. et al. Planar fiducial markers: a comparative study. Virtual Reality 27, 1733–1749 (2023). https://doi.org/10.1007/s10055-023-00772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-023-00772-5

Keywords

Navigation