Abstract
In this article we introduce the vehicle routing problem with coupled time windows (VRPCTW), which is an extension of the vehicle routing problem with time windows (VRPTW), where additional coupling constraints on the time windows are imposed. VRPCTW is applied to model a real-world planning problem concerning the integrated optimization of school starting times and public bus services. A mixed-integer programming formulation for the VRPCTW within this context is given. It is solved using a new meta-heuristic that combines classical construction aspects with mixed-integer preprocessing techniques, and improving hit-and-run, a randomized search strategy from global optimization. Solutions for several randomly generated and real-world instances are presented.
Similar content being viewed by others
References
Anthony R.N. (1964), Framework for analysis. Management Services (March–April): 18–24.
Bar-Yehuda R., Rawitz D. (2001), Efficient algorithms for integer programs with two variables per constraint. Algorithmica 29(4), 595–609.
Bell M.G.H. (1983), The Estimation of an Origin-Destination Matrix from Traffic Counts. Transportation Science 17(2): 198–217.
Bodin L., Berman L. (1979), Routing and Scheduling of School Buses by Computer. Transportation Science 13(2), 113–129.
Borndörfer R., Grötschel M., Löbel A. (2003), Duty Scheduling in Public Transit. Technical Report 01-02, Zuse Institut, Berlin.
Borndörfer R., Grötschel M., Pfetsch M. (2005), Path-Based Model for Line Planning in Public Transport. Technical Report 05-18, Zuse Institut, Berlin.
Borndörfer R., Löbel A., Weider S. (2004), A Bundle Method for Integrated Multi-Depot Vehicle and Crew Scheduling in Public Transit. Technical Report 04-14, Zuse Institut, Berlin.
Bowerman R.L., Hall G.B., Calamai P.H. (1995), A Multi-Objective Optimisation Approach to School Bus Routing Problems. Transp. Research A 28(5), 107–123.
Braca J., Bramel J., Posner B., Simchi-Levi D. (1997), A Computerized Approach to the New York City School Bus Routing Problem. IIE Transactions 29, 693–702.
Bussieck M.R., Kreuzer P., Zimmermann U.T. (1996), Optimal lines for railway systems. European J. Oper. Res. 96, 54–63.
Bussieck M.R., Winter T., Zimmermann U.T. (1997), Discrete Optimization in Public Rail Transport. Mathematical Programming 79, 415–444.
Carey M., Hendrickson C., Siddharthan K. (1981), A Method for Direct Estimation of Origin Destination Trip Matrices. Transportation Science 15(1): 32–49.
Claessens M.T., van Dijk N.M., Zwaneveld P.J. (1995), Cost Optimal Allocation of Rail Passenger Lines. European Journal Operation Research 110(3), 474–489.
Clarke G., Wright J. (1964), Scheduling of vehicles from a central depot to a number of delivery points. Operations Research 12, 568–581.
Corberan A., Fernandez E., Laguna M., Marti R. (2000), Heuristic Solutions to the Problem of Routing School Buses with Multiple Objectives. Technical Report TR08-2000, Dep. of Statistics and OR, University of Valencia, Spain.
Cordeau J.-F., Desaulniers G., Desrosiers J., Solomon M.M., Soumis F. (2002), VRP with time windows. In: Toth P., Vigo D. (eds.), The vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia, 157–193.
Dantzig G., Ramser J. (1959), The truck dispatching problem. Management Science 6, 80–91.
Desaulniers G., Desrosiers J., Erdmann A., Solomon M.M., Soumis F. (2002), VRP with pickup and delivery. In: Toth P., Vigo D. (eds.), The vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia, 225–242.
Fügenschuh A. (2005), The Integrated Optimization of School Starting Times and Public Bus Services. Logos Verlag, Berlin, ISBN 3-8325-1037-0, 165 pages.
Gaskell T. (1967), Bases for vehicle fleet scheduling. Operation Research Quarterly 18, 367–384.
Ginter V., Kliewer N., Suhl L. (2005), Solving large multi-depot multi-vehicle-type bus scheduling problems in practice. OR Spectrum 27, 507–523.
ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA. Information available at URL http://www.cplex.com.
Lagarias J.C. (1985), The computational complexity of simultaneous diophantine approximation problems. SIAM Journal on Computing 14, 196–209.
Laporte G., Semet F. (2002), Classical heuristics for the capacitated VRP. In: Toth P., Vigo D. (eds.), The vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia, 109–128.
Löbel A. (1997), Optimal Vehicle Scheduling in Public Transit. Shaker Verlag, Aachen.
Sherali D., Sivanandan R., Hobeika A.G. (1994), A Linear programming Approach for Synthesizing Origin Destination (O-D) Trip Tables from Link Traffic Volumes. Transportation Research B 28, 213–233.
Stöveken P. (2000), Wirtschaftlicherer Schulverkehr: ÖPNV-Optimierung mit erfolgsabhängiger Honorierung. Der Nahverkehr 3, 65–68. (in German).
Toth P., Vigo D. (2002), The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia.
Wikipedia, the Free Encyclopedia (2004). Online available at URL http://www.wikipedia.org.
Yellow P. (1970), A computational modification to the savings method of vehicle scheduling. Operational Research Quarterly 21, 281–283.
Zabinsky Z.B. (2003), Stochastic Adaptive Search for Global Optimization. Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Boston.
Zabinsky Z.B., Smith R.L., McDonald J.F., Romeijn H.E., Kaufman D.E. (1993), Improving Hit-and-Run for Global Optimization. Journal of Global Optimization 3, 171–192.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Fügenschuh, A. The vehicle routing problem with coupled time windows. cent.eur.j.oper.res. 14, 157–176 (2006). https://doi.org/10.1007/s10100-006-0166-5
Issue Date:
DOI: https://doi.org/10.1007/s10100-006-0166-5