Skip to main content

Subsidies and pricing strategies in a vehicle scrappage program with strategic consumers

  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

We consider the problem of a government that wishes to promote replacing old cars with new ones via a vehicle scrappage program. Since these programs increase consumer’s willingness to pay for a new car, manufacturers (or dealers) could respond strategically by raising their prices. In a two-period game between a government and a manufacturer, we find equilibrium prices and subsidy levels. Our results demonstrate that price levels are increasing over time and are higher than in the benchmark case where no subsidy is offered. Furthermore, if consumers act strategically, then the equilibrium price levels will be higher than in the scenario where they behave myopically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arroyo JL, Felipe Á, Ortuño MT et al (2020) Effectiveness of carbon pricing policies for promoting urban freight electrification: analysis of last mile delivery in Madrid. Cent Eur J Oper Res 28:1417–1440. https://doi.org/10.1007/s10100-019-00627-y

    Article  Google Scholar 

  • Aviv Y, Pazgal A (2008) Optimal pricing of seasonal products in the presence of forward-looking consumers. Manuf Serv Oper Manag 10(3):339–359

    Article  Google Scholar 

  • Besanko D, Winston WL (1990) Optimal price skimming by a monopolist facing rational consumers. Manage Sci 36(5):555–567

    Article  Google Scholar 

  • Chemama J, Cohen MC, Lobel R, Perakis G (2019) Consumer subsidies with a strategic supplier: Commitment vs. flexibility. Manage Sci 65(2):681–713

    Article  Google Scholar 

  • Cohen M, Lobel R, Perakis G (2016) The impact of demand uncertainty on consumer subsidies for green technology adoption. Manage Sci 62(5):1235–1258

    Article  Google Scholar 

  • De Groote O, Verboven F (2019) Subsidies and time discounting in new technology adoption: Evidence from solar photovoltaic systems. Am Econ Rev 109(6):2137–72

    Article  Google Scholar 

  • Dill J (2004) Estimating emissions reductions from accelerated vehicle retirement programs. Transp Res Part D: Transp Environ 9(2):87–106

    Article  Google Scholar 

  • Ding H, Zhao Q, An Z, Xu J, Liu Q (2015) Pricing strategy of environmental sustainable supply chain with internalizing externalities. Int J Prod Econ 170:563–575

    Article  Google Scholar 

  • Ewing J (2009) “Car-Scrapping Plans – Germany’s Lessons.” 7 May 2009. http://www.spiegel.de/international/business/0,1518,623362,00.html

  • Fan ZP, Cao Y, Huang CY, Li Y (2020) Pricing strategies of domestic and imported electric vehicle manufacturers and the design of government subsidy and tariff policies. Transp Res Part E Log Transp Rev 143:102093

    Article  Google Scholar 

  • Haurie A, Krawczyk JB, Zaccour G (2012) Games and Dynamic Games. Scientific World, Singapore

    Book  Google Scholar 

  • He P, He Y, Xu H (2019) Channel structure and pricing in a dual-channel closed-loop supply chain with government subsidy. Int J Prod Econ 213:108–123

    Article  Google Scholar 

  • He Y, Pang Y, Li X, Zhang M (2018) Dynamic subsidy model of photovoltaic distributed generation in China. Renew Energy 118:555–564

    Article  Google Scholar 

  • Hirte G, Tscharaktschiew S (2013) The optimal subsidy on electric vehicles in German metropolitan areas: a spatial general equilibrium analysis. Energy Econ 40:515–528

    Article  Google Scholar 

  • Hu S, Ma ZJ, Sheu JB (2019) Optimal prices and trade-in rebates for successive-generation products with strategic consumers and limited trade-in duration. Transp Res Part E Log Transp Rev 124:92–107

    Article  Google Scholar 

  • Huang J, Leng M, Liang L, Luo C (2014) Qualifying for a government’s scrappage program to stimulate consumers’ trade-in transactions? Analysis of an automobile supply chain involving a manufacturer and a retailer. Eur J Oper Res 239(2):363–376

    Article  Google Scholar 

  • International Energy Agency - Photovoltaic Power Systems Programme - Annual Report, (2014)

  • Janssens G, Zaccour G (2014) Strategic price subsidies for new technologies. Automatica 50:1999–2006

    Article  Google Scholar 

  • Jimínez JL, Perdiguero J, García C (2016) Evaluation of subsidies programs to sell green cars: Impact on prices, quantities and efficiency. Transp Policy 47:105–118

    Article  Google Scholar 

  • Jørgensen S, Zaccour G (1999) Price subsidies and guaranteed buys of a new technology. Eur J Oper Res 114:338–345

    Article  Google Scholar 

  • Kaul A, Pfeifer G, Witte S (2016) The incidence of cash for clunkers: evidence from the 2009 car scrappage scheme in Germany. Int Tax Public Financ 23(6):1093–1125

    Article  Google Scholar 

  • Lavee D, Becker N (2009) Cost-benefit analysis of an accelerated vehicle-retirement programme. J Environ Planning Manage 52(6):777–795

    Article  Google Scholar 

  • Lavee D, Moshe A, Berman I (2014) Accelerated vehicle retirement program: estimating the optimal incentive payment in Israel. Transp Res Part D: Transp Environ 26:1–9

    Article  Google Scholar 

  • Li S, Linn J, Spiller E (2013) Evaluating cash-for-clunkers: program effects on auto sales and the environment. J Environ Econ Manag 65(2):175–193

    Article  Google Scholar 

  • Lobel R, Perakis G (2011) Consumer choice model for forecasting demand and designing incentives for solar technology. MIT Sloan school working paper, 4872-11

  • Lorentziadis PL, Vournas SG (2011) A quantitative model of accelerated vehicle-retirement induced by subsidy. Eur J Oper Res 211(3):623–629

    Article  Google Scholar 

  • Walsh MP (2012) Automobiles and Climate Policy in the Rest of the OECD. In Cars and Carbon (pp. 355-369). Springer, Dordrecht

  • Yu Y, Han X, Hu G (2016) Optimal production for manufacturers considering consumer environmental awareness and green subsidies. Int J Prod Econ 182:397–408

    Article  Google Scholar 

  • Zaman H, Zaccour G (2020) Vehicle scrappage incentives to accelerate the replacement decision of heterogeneous consumers. Omega 91:102016

    Article  Google Scholar 

  • Zaman H, Zaccour G (2021) Optimal government scrappage subsidies in the presence of strategic consumers. Eur J Oper Res 288(3):829–838

    Article  Google Scholar 

  • Zsifkovits M, Günther M (2015) Simulating resistances in innovation diffusion over multiple generations: an agent-based approach for fuel-cell vehicles. Cent Eur J Oper Res 23:501–522. https://doi.org/10.1007/s10100-015-0391-x

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous reviewers for their helpful comments. Research supported by NSERC, Canada, Grant RGPIN-2021-02462.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Zaccour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

1.1 Proof of Proposition 1

We start by solving for the manufacturer to obtain its reaction to the subsidy announced by the government. Recall that the manufacturer’s profit is given by

$$\begin{aligned} \Pi =\Pi _{1}+\Pi _{2}=p_{1}(1-2p_{1}+\left( \theta -\gamma \right) s)+p_{2}\left( 2p_{1}+\gamma s-p_{2}\right) . \end{aligned}$$
(14)

First, we consider the second-period manufacturer’s profit. Taking the derivative of \(\Pi _{2}\) with respect to \(p_{2}\), we get

$$\begin{aligned} \frac{\partial \Pi _{2}}{\partial p_{2}}=0\Leftrightarrow p_{2}=\frac{ 2p_{1}+\gamma s}{2}. \end{aligned}$$

Substituting for \(p_{2}\) in \(\Pi\) yields

$$\begin{aligned} \Pi =p_{1}(1-2p_{1}+\left( \theta -\gamma \right) s)+\left( \frac{ 2p_{1}+\gamma s}{2}\right) ^{2}. \end{aligned}$$

Differentiating with respect to \(p_{1}\) gives

$$\begin{aligned} \Pi ^{\prime }=1-2p_{1}+\theta s=0\Leftrightarrow p_{1}=\frac{1+\theta s}{2}. \end{aligned}$$

Substituting in \(p_{2}\), we obtain the manufacturer’s reaction functions, that is,

$$\begin{aligned} p_{1}= & {}\; \dfrac{1}{2}\left( \theta s+1\right) , \nonumber \\ p_{2}= & {}\; \dfrac{1}{2}\left( \gamma s+\theta s+1\right) . \end{aligned}$$
(15)

To solve the government’s problem, we write down the Lagrangian

$$\begin{aligned} {\mathcal {L}}\left( s,\mu \right) = s.d_{1}^{\ge \eta }+s.d_{2}+\mu (\Gamma -d_{1}^{\ge \eta }-d_{1}^{\eta -1}-d_{2}), \end{aligned}$$

where \(\mu\) is the Lagrange multiplier appended to the target constraint. Developing the above equation and inserting for \(p_{1}\) and \(p_{2}\) from (15), we get

$$\begin{aligned} {\mathcal {L}}\left( s,\mu \right) =\Gamma \mu -\frac{1}{2}\mu +s\beta +\frac{1}{ 2}s^{2}\gamma -\frac{1}{2}s\theta \mu +\frac{1}{2}s\gamma \mu . \end{aligned}$$

Assuming an interior solution, the first-order optimality conditions are

$$\begin{aligned}{} & {} \frac{\partial {\mathcal {L}}}{\partial s}=0\Leftrightarrow 2\beta +2s\gamma +\mu \left( \gamma -\theta \right) =0, \\{} & {} \frac{\partial {\mathcal {L}}}{\partial \mu }=0\Leftrightarrow 2\Gamma -1-s\left( \theta -\gamma \right) =0. \end{aligned}$$

Solving, we obtain

$$\begin{aligned}{} & {} s=\frac{2\Gamma -1}{\theta -\gamma }, \\{} & {} \mu =\frac{2\left( \left( 2\Gamma -1\right) \gamma +\beta \left( \theta -\gamma \right) \right) }{\left( \theta -\gamma \right) ^{2}}. \end{aligned}$$

The values of \(p_{1}\) and \(p_{2}\) can be found by inserting s into their formulas.

1.2 Proof of Proposition 2

As in Proposition 1, we solve for the manufacturer and get the following reaction function:

$$\begin{aligned} p=\dfrac{1}{2}\left( \theta s+1\right) . \end{aligned}$$

To solve the the government’s problem, we introduce the Lagrangian

$$\begin{aligned} {\mathcal {L}}=s(s\theta +\beta -p)+s(\gamma s+p)+\mu (-s\theta +\Gamma +p-1), \end{aligned}$$

where \(\mu\) is the Lagrange multiplier. Substituting for p and solving, we obtain the following unique subsidy and value of the Lagrange multiplier:

$$\begin{aligned} {\tilde{s}}= & {}\; \frac{2\Gamma -1}{\theta }>0,\\ {\tilde{p}}= & {}\; \Gamma >0, \\ \mu= & {}\; \frac{2(4\Gamma \gamma +4\Gamma \theta +\beta \theta -2\gamma -2\theta )}{\theta ^{2}}. \end{aligned}$$

Substituting in the price, manufacturer’s profit and government’s cost, we obtain the \({\tilde{p}}\), \({\tilde{\Pi }}\) and \({\tilde{C}}\) in the statement of the Proposition. We note that the equilibrium is indeed interior, and the demands are positive:

$$\begin{aligned} d_{1}= & {}\; \frac{\gamma \left( 1-2\Gamma \right) }{\theta }>0, \\ d_{2}= & {}\; \frac{1}{\theta }\left( \theta \Gamma +\gamma \left( 2\Gamma -1\right) \right) >0. \end{aligned}$$

1.3 Proof of Proposition 4

Same as proposition 1, we solve for the manufacturer and we get the following price functions:

$$\begin{aligned} p_{1}= & {}\; \dfrac{1}{2}\theta s_{2}+\dfrac{1}{2}\\ p_{2}= & {}\; \dfrac{1}{2}\gamma s_{2}+\theta s_{2}-\dfrac{1}{2}\theta s_{1}+ \dfrac{1}{2}. \end{aligned}$$

The Lagrangian function of the government is given by:

$$\begin{aligned} {\mathcal {L}}=&\,s_{1}\left( \theta s_{1}+\beta -\dfrac{1}{2}\theta s_{2}-\dfrac{1 }{2}\right) +s_{2}\left( \dfrac{1}{2}\gamma s_{2}-\dfrac{1}{2}\theta s_{1}+\theta s_{2}+\dfrac{1}{2}\right) \\ &\quad +\mu (-s_{2}\theta +\Gamma +p_{2}-1), \end{aligned}$$

which results in the following solution:

$$\begin{aligned} \check{s}_{1}= & {}\; \frac{2\theta \left( 2\Gamma -1\right) +\gamma \left( 2\beta -1\right) )}{2\theta (\theta -2\gamma )}>0,\\ \check{s}_{2}= & {}\; \frac{2\beta +8\Gamma -5}{2\left( \theta -2\gamma \right) } >0,\\ \mu= & {}\; -\dfrac{1}{2}\frac{8\Gamma \gamma +12\Gamma \theta +4\beta \theta -6\gamma -7\theta }{\theta (2\gamma -\theta )}, \end{aligned}$$

which leads to the following prices:

$$\begin{aligned} \check{p}_{1}= & {}\; \frac{(2\beta +8\Gamma -3)\theta -4\gamma }{4\left( \theta -2\gamma \right) }=\frac{2\left( \left( \beta +\Gamma \right) \theta -2\gamma \right) +(6\Gamma -3)\theta }{4\left( \theta -2\gamma \right) }>0,\\ \check{p}_{2}= & {}\; \frac{(2\beta +6\Gamma -3)\theta -4\gamma (1-\Gamma )}{ 2\left( \theta -2\gamma \right) }=\frac{(6\Gamma -3)\theta +2\left( \beta \theta -2\gamma (1-\Gamma )\right) }{2\left( \theta -2\gamma \right) }>0. \end{aligned}$$

We check for nonnegativity of demands:

$$\begin{aligned} d_{1}^{\ge \eta }=s_{1}\theta +\beta -p_{1}=\frac{1}{4}\left( 2\beta -1\right) >0, \end{aligned}$$

and

$$\begin{aligned} d_{1}^{\eta -1}= & {}\; -\gamma s_{2}-p_{1}+1-\beta \\= & {}\; \frac{1}{4\left( \theta -2\gamma \right) }\left( 7\theta +6\gamma -8\Gamma \left( \theta +2\gamma \right) -6\theta \beta +4\beta \gamma \right) \\> & {}\; 0\Leftrightarrow \Gamma <\frac{7\theta +6\gamma -6\theta \beta +4\beta \gamma }{8\left( \theta +2\gamma \right) }. \end{aligned}$$

If \(\Gamma \ge \frac{7\theta +6\gamma -6\theta \beta +4\beta \gamma }{ 8\left( \theta +2\gamma \right) }\), then demand \(d_{1}^{\eta -1}\) will be set equal to zero.

Finally,

$$\begin{aligned} d_{2}=\frac{1}{2\left( \theta -2\gamma \right) }\left( \left( 3\theta +2\gamma \right) \left( 2\Gamma -1\right) +2\left( \theta \beta -\gamma \right) \right) >0. \end{aligned}$$

1.4 Proof of Proposition 5

To solve for a Markov-perfect (feedback) Stackelberg equilibrium, we solve the game backward, that is, we start by the second stage.

$$\begin{aligned} d_{1}^{{ \ge \eta }} & = s_{1} \theta + \beta - p_{1} , \\ d_{1}^{{\eta - 1}} & = - \gamma s_{2} - p_{1} + 1 - \beta , \\ d_{2} & = 1 - (d_{1}^{{\eta - 1}} + d_{1}^{{ \ge \eta }} ) + s_{2} \theta - p_{2} , \\ & = \gamma s_{2} + 2p_{1} - \left( {s_{1} - s_{2} } \right)\theta - p_{2} , \\ \end{aligned}$$

1.5 Second-period equilibrium

For any given \(s_{2}\) announced by the government, the manufacturer solves the following optimization problem:

$$\begin{aligned} \max _{p_{2}\ge 0}\Pi _{2}=p_{2}\left( \gamma s_{2}+2p_{1}-\left( s_{1}-s_{2}\right) \theta -p_{2}\right) \text {.} \end{aligned}$$

Introduce the manufacturer’s Lagrangian

$$\begin{aligned} {\mathcal {L}}_{M_{2}}\left( p_{2},\lambda _{2}\right) =p_{2}\left( \gamma s_{2}+2p_{1}-\left( s_{1}-s_{2}\right) \theta -p_{2}\right) +\lambda _{2}p_{2}, \end{aligned}$$

where \(\lambda _{2}\) is the Lagrange multiplier appended to the constraint \(p_{2}\ge 0\). The first-order optimality conditions are

$$\begin{aligned} \frac{\partial {\mathcal {L}}_{M_{2}}}{\partial p_{2}}= & {}\; \gamma s_{2}+2p_{1}-\left( s_{1}-s_{2}\right) \theta -2p_{2}+\lambda _{2}=0, \\ \lambda _{2}\ge & {}\; 0,p_{2}\ge 0,\lambda _{2}p_{2}=0. \end{aligned}$$

Solving the first equation, gives

$$\begin{aligned} p_{2}\left( s_{2}\right) =\frac{\gamma s_{2}+2p_{1}-\left( s_{1}-s_{2}\right) \theta +\lambda _{2}}{2}. \end{aligned}$$

Now, we consider the second-period government’s optimization problem, which is given by

$$\begin{aligned} \min _{s_{2}\ge 0}\ C_{2}=s_{2}.d_{2}. \end{aligned}$$

Substituting for \(p_{2}\) in \(d_{2}\), the above optimization problem becomes

$$\begin{aligned} \min _{s_{2}\ge 0}\ C_{2}=s_{2}.\left( p_{1}-\frac{1}{2}\left( \lambda _{2}+\theta \left( s_{1}-s_{2}\right) -\gamma s_{2}\right) \right) . \end{aligned}$$

Introduce the second-period government’s Lagrangian

$$\begin{aligned} {\mathcal {L}}_{2}\left( s_{2},\mu _{2}\right) =s_{2}\left( p_{1}-\frac{1}{2} \left( \lambda _{2}+\theta \left( s_{1}-s_{2}\right) -\gamma s_{2}\right) \right) +\eta _{2}s_{2}, \end{aligned}$$

where \(\eta _{2}\) is the Lagrange multiplier appended to the constraint \(s_{2}\ge 0\). The first-order optimality conditions are

$$\begin{aligned}{} & {} \frac{\partial {\mathcal {L}}_{2}}{\partial s_{2}}=p_{1}-\frac{1}{2} \left( \lambda _{2}+\theta \left( s_{1}-2s_{2}\right) -2\gamma s_{2}\right) +\eta _{2}=0, \\{} & {} \eta _{2}\le 0,s_{2}\ge 0,\ \ \ \eta _{2}s_{2}=0. \end{aligned}$$

Solving the first equation, we obtain

$$\begin{aligned} s_{2}\left( s_{1},p_{1}\right) =\frac{1}{\theta +\gamma }\left( \frac{1}{2} \lambda _{2}-\eta _{2}-p_{1}+\frac{1}{2}\theta s_{1}\right) . \end{aligned}$$
(16)

Substituting in \(p_{2}\) yields

$$\begin{aligned} p_{2}\left( s_{1},p_{1}\right) =\frac{1}{4}\left( 2p_{1}+3\lambda _{2}-2\eta _{2}-\theta s_{1}\right) . \end{aligned}$$
(17)

The second-period demand is given by

$$\begin{aligned} d_{2}\left( s_{1},p_{1}\right) =\frac{1}{4}\left( 2p_{1}-2\eta _{2}-\lambda _{2}-\theta s_{1}\right) . \end{aligned}$$
(18)

To wrap up, in (16) and (17), we express the second-period strategies in terms of the first-period decision variables.

1.6 First-period equilibrium (or overall equilibrium problem)

The manufacturer overall optimization problem is as follows:

$$\begin{aligned} \max _{p_{1}\ge 0}\Pi =p_{1}(d_{1}^{\eta -1}+d_{1}^{\ge \eta })+p_{2}\left( s_{1},p_{1}\right) d_{2}\left( s_{1},p_{1}\right) , \end{aligned}$$
(19)

where \(p_{2}\left( s_{1},p_{1}\right)\) and \(d_{2}\left( s_{1},p_{1}\right)\) have been determined in the previous step and the product \(p_{2}\left( s_{1},p_{1}\right) d_{2}\left( s_{1},p_{1}\right)\) plays the role of a salvage value in the current optimization problem.

Substituting for the second-period equilibrium strategies, the above optimization problem becomes:

$$\begin{aligned} \max _{{p_{1} \ge 0}} \Pi = & p_{1} \left( {\frac{{2\left( {\theta + \gamma } \right) - \gamma \lambda _{2} + 2\gamma \eta _{2} + \left( {2\theta + \gamma } \right)\left( {\theta s_{1} - 2p_{1} } \right)}}{{2\left( {\theta + \gamma } \right)}}} \right) \\ & + \frac{1}{{16}}\left( {2p_{1} + 3\lambda _{2} - 2\eta _{2} - \theta s_{1} } \right)\left( {2p_{1} - 2\eta _{2} - \lambda _{2} - \theta s_{1} } \right) \\ \end{aligned}$$
(20)

The Lagrangian is given by

$$\begin{aligned} {\mathcal {L}}_{M}\left( p_{1},\lambda _{1}\right)= & {}\; p_{1}\left( \frac{2\left( \theta +\gamma \right) -\gamma \lambda _{2}+2\gamma \eta _{2}+\left( 2\theta +\gamma \right) \left( \theta s_{1}-2p_{1}\right) }{2\left( \theta +\gamma \right) }\right) \\{} & {} +\frac{1}{16}\left( 2p_{1}+3\lambda _{2}-2\eta _{2}-\theta s_{1}\right) \left( 2p_{1}-2\eta _{2}-\lambda _{2}-\theta s_{1}\right) +\lambda _{1}p_{1}, \end{aligned}$$

where \(\lambda _{1}\) is the Lagrange multiplier appended to the constraint \(p_{1}\ge 0\).

The first-order optimality conditions give

$$\begin{aligned} p_{1}\left( s_{1}\right)= & {}\; \frac{4\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) +\left( \lambda _{2}-2\eta _{2}\right) \left( \theta -\gamma \right) +\left( 3\theta +\gamma \right) \theta s_{1}}{14\theta +6\gamma }, \\ p_{1}\ge & {} 0,\lambda _{1}\ge 0,\lambda _{1}p_{1}=0. \end{aligned}$$

Now, we turn to the government’s optimization problem. Substituting for \(p_{1}\left( s_{1}\right)\) in (16)–(18) and in the demands, we get

$$\begin{aligned} p_{2}\left( s_{1}\right)= & {}\; \frac{2\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) +\left( 11\theta +4\gamma \right) \lambda _{2}-2\left( 4\theta +\gamma \right) \eta _{2}-\left( 2\theta +\gamma \right) \theta s_{1} }{14\theta +6\gamma }, \end{aligned}$$
(21)
$$\begin{aligned} d_{2}\left( s_{1}\right)= & {}\; \frac{2\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) -\left( 3\theta +2\gamma \right) \lambda _{2}-2\left( 4\theta +\gamma \right) \eta _{2}-\left( 2\theta +\gamma \right) \theta s_{1} }{14\theta +6\gamma }, \end{aligned}$$
(22)
$$\begin{aligned} d_{1}^{\ge \eta }\left( s_{1}\right)= & {}\; \frac{-4\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) +14\theta \beta +6\beta \gamma +\left( 2\eta _{2}-\lambda _{2}\right) \left( \theta -\gamma \right) +\left( 11\theta +5\gamma \right) \theta s_{1}}{14\theta +6\gamma } \end{aligned}$$
(23)
$$\begin{aligned} d_{1}^{{\eta - 1}} \left( {s_{1} } \right) = & - \frac{{\left( {\left( {10\theta + 6\gamma } \right)\left( {\beta - 1} \right) + 4\theta \left( {\beta + \lambda _{1} } \right)} \right)\left( {\theta + \gamma } \right) + \left( {\lambda _{2} - 2\eta _{2} } \right)\left( {\theta ^{2} + 3\gamma ^{2} + 6\theta \gamma } \right)}}{{14\theta ^{2} + 20\theta \gamma + 6\gamma ^{2} }} \\ & - \frac{{\left( {3\theta ^{2} + 3\gamma ^{2} + 8\theta \gamma } \right)\theta s_{1} }}{{14\theta ^{2} + 20\theta \gamma + 6\gamma ^{2} }} \\ \end{aligned}$$
(24)
$$\begin{aligned} \min _{s_{1}\ge 0}&\ C=s_{1}.d_{1}^{\ge \eta }+s_{2}.d_{2}, \nonumber \\ \text {subject to: }&d_{1}^{\ge \eta }+d_{1}^{\eta -1}+d_{2}=\Gamma , \end{aligned}$$
(25)
$$\begin{aligned}&\min _{s_{1}\ge 0}\ C=s_{1}\left( \frac{-4\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) +14\theta \beta +6\beta \gamma +\left( 2\eta _{2}-\lambda _{2}\right) \left( \theta -\gamma \right) +\left( 11\theta +5\gamma \right) \theta s_{1}}{14\theta +6\gamma }\right) \nonumber \\&+\left( \frac{-2\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) +\left( 3\theta +2\gamma \right) \left( \lambda _{2}-2\eta _{2}\right) +\left( 2\theta +\gamma \right) \theta s_{1}}{7\theta ^{2}+10\theta \gamma +3\gamma ^{2}}\right) \times \end{aligned}$$
(26)

Inserting for the above values in the following optimization problem

$$\begin{aligned}&\left( \frac{2\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) -\left( 3\theta +2\gamma \right) \lambda _{2}-2\left( 4\theta +\gamma \right) \eta _{2}-\left( 2\theta +\gamma \right) \theta s_{1}}{14\theta +6\gamma }\right) , \end{aligned}$$
(27)

we get

$$\begin{aligned}&\text {subject to}:\frac{1}{14\theta ^{2}+20\theta \gamma +6\gamma ^{2}} \left( 8\theta ^{2}+4\gamma ^{2}+12\theta \gamma -\left( 6\theta ^{2}+2\gamma ^{2}+8\theta \gamma \right) \lambda _{1}-\right. \end{aligned}$$
(28)
$$\begin{aligned}&\left. \left( 5\theta ^{2}+4\gamma ^{2}-11\theta \gamma \right) \lambda _{2}-2\left( 2\theta ^{2}-\gamma ^{2}-\theta \gamma \right) \eta _{2}+\left( 6\theta ^{2}+\gamma ^{2}+5\theta \gamma \right) \theta s_{1}\right) =\Gamma , \end{aligned}$$
(29)
$$\begin{aligned} s_{1}\left( \lambda _{1},\lambda _{2},\eta _{2}\right)= & {}\; \frac{1}{6\theta ^{3}+\theta \gamma ^{2}+5\theta ^{2}\gamma }\left( -8\theta ^{2}-4\gamma ^{2}-12\theta \gamma +14\Gamma \theta ^{2}+6\Gamma \gamma ^{2}+20\Gamma \theta \gamma \right. \nonumber \\{} & {} \left. +2\left( 3\theta ^{2}+\gamma ^{2}+4\theta \gamma \right) \lambda _{1}+\left( 5\theta ^{2}+4\gamma ^{2}-11\theta \gamma \right) \lambda _{2}\right. \nonumber \\{} & {} \left. +2\left( 2\theta ^{2}-\gamma ^{2}-\theta \gamma \right) \eta _{2}\right) . \end{aligned}$$
(30)
$$\begin{aligned} p_{1}\left( \lambda _{1},\lambda _{2},\eta _{2}\right) =\frac{\left( 14\Gamma \theta ^{2}+6\Gamma \gamma ^{2}+\left( 14\theta ^{2}+6\gamma ^{2}+20\theta \gamma \right) \lambda _{1}+\left( 7\theta ^{2}+3\gamma ^{2}-12\theta \gamma \right) \lambda _{2}+20\Gamma \theta \gamma \right) }{ 28\theta ^{2}+26\theta \gamma +6\gamma ^{2}}. \end{aligned}$$
(31)

The Lagrangian is given by

$$\begin{aligned} {\mathcal {L}}_{1}\left( s_{1},\mu \right)= & {} s_{1}\left( \frac{-4\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) +14\theta \beta +6\beta \gamma +\left( 2\eta _{2}-\lambda _{2}\right) \left( \theta -\gamma \right) +\left( 11\theta +5\gamma \right) \theta s_{1}}{14\theta +6\gamma }\right) \\{} & {} +\left( \frac{-2\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) +\left( 3\theta +2\gamma \right) \left( \lambda _{2}-2\eta _{2}\right) +\left( 2\theta +\gamma \right) \theta s_{1}}{7\theta ^{2}+10\theta \gamma +3\gamma ^{2}}\right) \times \\{} & {} \left( \frac{2\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) -\left( 3\theta +2\gamma \right) \lambda _{2}-2\left( 4\theta +\gamma \right) \eta _{2}-\left( 2\theta +\gamma \right) \theta s_{1}}{14\theta +6\gamma }\right) \\{} & {} +\frac{\mu }{14\theta ^{2}+20\theta \gamma +6\gamma ^{2}}\left( 8\theta ^{2}+4\gamma ^{2}+12\theta \gamma -\left( 6\theta ^{2}+2\gamma ^{2}+8\theta \gamma \right) \lambda _{1}\right. \\{} & {} \left. -\left( 5\theta ^{2}+4\gamma ^{2}-11\theta \gamma \right) \lambda _{2}\right. \\{} & {} \left. -2\left( 2\theta ^{2}-\gamma ^{2}-\theta \gamma \right) \eta _{2}+\left( 6\theta ^{2}+\gamma ^{2}+5\theta \gamma \right) \theta s_{1}\right. \\{} & {} \left. -\left( 14\theta ^{2}+20\theta \gamma +6\gamma ^{2}\right) \Gamma \right) \\{} & {} +\eta _{1}s_{1}, \end{aligned}$$

where \(\mu\) and \(\eta _{1}\) are the Lagrange multipliers appended to the target constraint and \(s_{1}\ge 0\), respectively.

The first-order optimality conditions are

$$\begin{aligned}{} & {} \frac{\partial {\mathcal {L}}_{1}}{\partial s_{1}}=-\frac{1}{14\theta +6\gamma } \left( 4\left( \theta +\gamma \right) \left( 1+\lambda _{1}\right) -14\theta \beta -6\beta \gamma +\left( \lambda _{2}-2\eta _{2}\right) \left( \theta -\gamma \right) \right. \\ \left. -22\theta ^{2}s_{1}-10\theta \gamma s_{1}\right) \\+\frac{\theta \left( 2\theta +\gamma \right) }{\left( 7\theta +3\gamma \right) ^{2}\left( \theta +\gamma \right) }\left( 2\left( 1+\lambda _{1}\right) \left( \theta +\gamma \right) -3\theta \lambda _{2}-2\gamma \lambda _{2}-\theta \eta _{2}\right. \\ \left. +\gamma \eta _{2}-2\theta ^{2}s_{1}-\theta \gamma s_{1}\right) \\ -\theta \mu \frac{6\theta ^{2}+5\theta \gamma +\gamma ^{2}}{14\theta ^{2}+20\theta \gamma +6\gamma ^{2}}\left( 6\theta ^{2}\lambda _{1}-4\gamma ^{2}-12\theta \gamma -8\theta ^{2}+5\theta ^{2}\lambda _{2}+2\gamma ^{2}\lambda _{1}+4\gamma ^{2}\lambda _{2}\right. \\ \left. +8\theta \gamma \lambda _{1}-11\theta \gamma \lambda _{2}\right) \\ +\eta _{1}=0 \\ \\ \frac{\partial {\mathcal {L}}_{1}}{\partial \mu }=\left( 8\theta ^{2}+4\gamma ^{2}+12\theta \gamma -\left( 6\theta ^{2}+2\gamma ^{2}+8\theta \gamma \right) \lambda _{1}\right. \\ \left. -\left( 5\theta ^{2}+4\gamma ^{2}-11\theta \gamma \right) \lambda _{2}\right. \\ \left. -2\left( 2\theta ^{2}-\gamma ^{2}-\theta \gamma \right) \eta _{2}+\left( 6\theta ^{2}+\gamma ^{2}+5\theta \gamma \right) \theta s_{1}\right. \\ \left. -\left( 14\theta ^{2}+20\theta \gamma +6\gamma ^{2}\right) \Gamma \right) =0 \\ \\ \eta _{1}\le 0,s_{1}\ge 0,\ \ \ \eta _{1}s_{1}=0. \end{aligned}$$

From the second condition, we can get \(s_{1}\) as function of the model’s parameters and the Lagrange multipliers, that is,

$$\begin{aligned} s_{2}\left( \lambda _{2},\eta _{2}\right)= & {}\; -\frac{\left( 2\theta \gamma -14\theta ^{2}-6\gamma ^{2}\right) \lambda _{2}+\left( 14\theta ^{2}+6\gamma ^{2}+20\theta \gamma \right) \left( 1+\eta _{2}-\Gamma \right) }{21\theta ^{3}+37\theta ^{2}\gamma +19\theta \gamma ^{2}+3\gamma ^{3}}, \end{aligned}$$
(32)

Inserting for \(s_{1}\) in \(p_{1}\,\)we get

$$\begin{aligned} p_{2}\left( \lambda _{2},\eta _{2}\right)= & {}\; \frac{\left( 7\theta ^{2}+3\gamma ^{2}+10\theta \gamma \right) \left( 1-\Gamma \right) +\left( 14\theta +17\gamma \right) \theta \lambda _{2}-\left( 14\theta +6\gamma \right) \theta \eta _{2}}{21\theta ^{2}+16\theta \gamma +3\gamma ^{2}}, \end{aligned}$$
(33)

Substituting for \(s_{1}\left( \lambda _{1},\lambda _{2},\eta _{2}\right)\) in \(s_{2}\left( s_{1}\right)\) and \(p_{2}\left( s_{1}\right)\), we obtain

$$s_{2} = {\text{ }} - \frac{{\left( {14\theta ^{2} + 6\gamma ^{2} + 20\theta \gamma } \right)\left( {1 - \Gamma } \right)}}{{21\theta ^{3} + 37\theta ^{2} \gamma + 19\theta \gamma ^{2} + 3\gamma ^{3} }}\; - \frac{{\left( {14\theta ^{2} + 6\gamma ^{2} + 20\theta \gamma } \right)\left( {1 - \Gamma } \right)}}{{21\theta ^{3} + 37\theta ^{2} \gamma + 19\theta \gamma ^{2} + 3\gamma ^{3} }},{\text{ }}$$
(34)
$$\begin{aligned} p_{2}= & {}\; \frac{\left( 7\theta ^{2}+3\gamma ^{2}+10\theta \gamma \right) \left( 1-\Gamma \right) }{21\theta ^{2}+16\theta \gamma +3\gamma ^{2}}. \end{aligned}$$
(35)

We have four cases to consider:

  1. 1.

    \(s_{2}>0\) and \(p_{2}>0\) \(\Rightarrow\) \(\eta _{2}=\lambda _{2}=0\). Then,

    $$\begin{aligned} \eta _{2}= & {}\; \Gamma -1<0, \end{aligned}$$
    (36)
    $$\begin{aligned} p_{2}\left( \lambda _{2},\eta _{2}\right)= & {}\; 1-\Gamma >0. \end{aligned}$$
    (37)

    Clearly, \(s_{2}\) is negative and therefore a contradiction.

  2. 2.

    \(s_{2}=0\) and \(p_{2}>0\) \(\Rightarrow\) \(\eta _{2}<0\) and \(\lambda _{2}=0\). Then,

    $$\begin{aligned} \eta _{2}= & {}\; \frac{\left( 7\theta ^{2}+3\gamma ^{2}+10\theta \gamma \right) \left( \Gamma -1\right) }{11\theta \gamma }<0, \end{aligned}$$
    (38)
    $$\begin{aligned} \lambda _{2}= & {}\; \frac{\left( 7\theta ^{2}+3\gamma ^{2}+10\theta \gamma \right) \left( \Gamma -1\right) }{11\theta \gamma }>0. \end{aligned}$$
    (39)
  3. 3.

    \(s_{2}=0\) and \(p_{2}=0\) \(\Rightarrow\) \(\eta _{2}<0\) and \(\lambda _{2}>0\). Then,

    $$\begin{aligned} s_{2}= & {}\; \frac{2\left( 7\theta +3\gamma \right) \left( \Gamma -1\right) }{14\theta ^{2}+17\gamma \theta }<0, \end{aligned}$$
    (40)
    $$\begin{aligned} \lambda _{2}= & {}\; \frac{\left( \Gamma -1\right) \left( 7\theta ^{2}+3\gamma ^{2}+10\theta \gamma \right) }{\theta \left( 14\theta +17\gamma \right) }<0, \end{aligned}$$
    (41)

    The fact that \(\lambda _{2}\) is strictly negative is a contradiction.

  4. 4.

    \(s_{2}>0\) and \(p_{2}=0\) \(\Rightarrow\) \(\eta _{2}=0\) and \(\lambda _{2}>0\). Then, a contradiction.

Consequently, the only admissible solution is

$$\begin{aligned} s_{2}=0,p_{2}=1-\Gamma ,\eta _{2}=\Gamma -1,\lambda _{2}=0. \end{aligned}$$

Substituting for these values in (32) and (33), we obtain

$$\begin{aligned} s_{1}\left( \lambda _{1}\right)= & {}\; \frac{1}{6\theta ^{3}+\theta \gamma ^{2}+5\theta ^{2}\gamma }\left( -8\theta ^{2}-4\gamma ^{2}-12\theta \gamma +14\Gamma \theta ^{2}+6\Gamma \gamma ^{2}+20\Gamma \theta \gamma \right. \\{}\; & {}\; \left. +2\left( 3\theta ^{2}+\gamma ^{2}+4\theta \gamma \right) \lambda _{1}+2\left( 2\theta ^{2}-\gamma ^{2}-\theta \gamma \right) \left( \Gamma -1\right) \right) ,\\ p_{1}\left( \lambda _{1}\right)= & {}\; \frac{\left( 14\Gamma \theta ^{2}+6\Gamma \gamma ^{2}+\left( 14\theta ^{2}+6\gamma ^{2}+20\theta \gamma \right) \lambda _{1}+20\Gamma \theta \gamma \right) }{28\theta ^{2}+26\theta \gamma +6\gamma ^{2}}. \end{aligned}$$

Clearly, \(p_{1}\left( \lambda _{1}\right)\) is strictly positive and therefore \(\lambda _{1}\) must be equal to zero. Therefore, the final value of \(p_{1}\) is

$$\begin{aligned} p_{1}=\frac{\left( \theta +\gamma \right) \Gamma }{2\theta +\gamma }, \end{aligned}$$
(42)

and

$$\begin{aligned} s_{1}=\frac{6\Gamma \theta +4\Gamma \gamma -4\theta -2\gamma }{\theta \left( 2\theta +\gamma \right) }, \end{aligned}$$

which is positive for

$$\begin{aligned} \Gamma >\frac{2\theta +\gamma }{3\theta +2\gamma }. \end{aligned}$$

To determine the Lagrange multiplier associated with the target constraint, it suffices to substitute for the equilibrium values in \(\frac{\partial {\mathcal {L}}_{1}}{\partial s_{1}}=0\) to obtain

$$\begin{aligned} \mu =-\frac{2\theta ^{3}\left( 32\Gamma -23+7\beta \right) +\theta ^{2}\left( 27\beta \gamma -93\gamma +137\Gamma \gamma \right) +\theta \left( 91\Gamma \gamma ^{2}-57\gamma ^{2}\right) +\gamma ^{3}\left( 19\Gamma +3\beta -11\right) +16\theta \beta \gamma ^{2}}{2\theta \left( 3\theta +\gamma \right) \left( \theta +\gamma \right) \left( 2\theta +\gamma \right) ^{3}}. \end{aligned}$$

We check for the nonnegativity of demands. First, we have

$$\begin{aligned} d_{2}=\gamma s_{2}+2p_{1}-\left( s_{1}-s_{2}\right) \theta -p_{2}=1-\Gamma >0. \end{aligned}$$

Using the constraint \(d_{1}^{\ge \eta }+d_{1}^{\eta -1}+d_{2}=\Gamma\), we get

$$\begin{aligned} d_{1}^{\ge \eta }+d_{1}^{\eta -1}+1-\Gamma =\Gamma \Leftrightarrow d_{1}^{\ge \eta }+d_{1}^{\eta -1}=2\Gamma -1>0. \end{aligned}$$

So the total demand in the first period is positive. Moreover,

$$\begin{aligned} d_{1}^{\ge \eta }=s_{1}\theta +\beta -p_{1}=\frac{1}{2\theta +\gamma } \left( \Gamma \left( 5+3\gamma \right) +\beta \gamma -4\theta +2\left( \theta \beta -\gamma \right) \right) . \end{aligned}$$

Using \(\Gamma >\frac{2\theta +\gamma }{3\theta +2\gamma }\), we have

$$\begin{aligned} d_{1}^{\ge \eta }= & {}\; \frac{1}{2\theta +\gamma }\left( \Gamma \left( 5+3\gamma \right) +\beta \gamma -4\theta +2\left( \theta \beta -\gamma \right) \right) \\> & {}\; \frac{1}{2\theta +\gamma }\left( \frac{2\theta +\gamma }{3\theta +2\gamma }\left( 5+3\gamma \right) +\beta \gamma -4\theta +2\left( \theta \beta -\gamma \right) \right) \\= & {}\; \frac{\theta \left( 3\beta -1\right) +\gamma \left( 2\beta -1\right) +5\left( 1-\theta \right) }{3\theta +2\gamma }>0. \end{aligned}$$

Consider now \(d_{1}^{\eta -1}:\)

$$\begin{aligned} d_{1}^{\eta -1}= & {}\; -\gamma s_{2}-p_{1}+1-\beta =-p_{1}+1-\beta =1-\frac{ \left( \theta +\gamma \right) \Gamma +\beta \left( 2\theta +\gamma \right) }{2\theta +\gamma } \\> & {}\; 0\Leftrightarrow \frac{\left( \theta +\gamma \right) \Gamma +\beta \left( 2\theta +\gamma \right) }{2\theta +\gamma }<1\Leftrightarrow \Gamma <\frac{ \left( 1-\beta \right) \left( 2\theta +\gamma \right) }{\left( \theta +\gamma \right) }. \end{aligned}$$

If \(\Gamma >\frac{\left( 1-\beta \right) \left( 2\theta +\gamma \right) }{ \left( \theta +\gamma \right) }\), then \(d_{1}^{\eta -1}=0\).

1.7 Proof of Proposition 6

The manufacturer profits and subsidy costs in both settings are given by:

$$\begin{aligned}{}\; & {}\; \check{C}= \frac{(8\beta ^{2}+(64 \Gamma -36)\beta +96 \Gamma ^{2}-112 \Gamma +32) \theta ^{2}+4( \beta ^2 16\Gamma ^2+\beta ^2-24 \Gamma -3\beta +\dfrac{ 37}{4}) \gamma \theta -8(\beta -\dfrac{1}{2})^{2} \gamma ^{2}}{ 8\theta (2\gamma -\theta )^{2}}\\{}\; & {}\; \check{\Pi }=\frac{(40 \Gamma ^2+(24 \beta -36) \Gamma +4(\beta -\dfrac{3}{2})^2) \theta ^2+16 \gamma (2 \Gamma ^2+(\beta - \dfrac{9}{2}) \Gamma -\beta +\dfrac{3}{2} )\theta +(32(\Gamma ^2-\Gamma +\dfrac{1}{2})) \gamma ^2}{(2 \gamma -\theta )^2}\\{}\; & {}\; {\hat{C}}=\frac{4((\dfrac{3}{2} \Gamma -1) \theta +\gamma (\Gamma -\dfrac{1}{2} ))((2 \beta +5 \Gamma -4) \theta +\gamma (\beta +3 \Gamma -2))}{(2 \theta +\gamma )^2 \theta }\\{}\; & {}\; {\hat{\Pi }}=\frac{(3 \gamma +4 \theta ) \Gamma ^2+(-3 \gamma -5 \theta ) \Gamma +2 \theta +\gamma }{2 \theta +\gamma } \end{aligned}$$

Considering the circumstances in propositions 4 and 5, \(\check{C}-{\hat{C}}\) and \(\check{\Pi } -{\hat{\Pi }}\) are increasing in \(\Gamma\) and positive at \(\Gamma =\frac{ 2\theta +\gamma }{3\theta +2\gamma }\), that is to say, \(\check{C}>{\hat{C}}\) and \(\check{\Pi }>{\hat{\Pi }}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, H., Zaccour, G. Subsidies and pricing strategies in a vehicle scrappage program with strategic consumers. Cent Eur J Oper Res 32, 457–481 (2024). https://doi.org/10.1007/s10100-023-00867-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-023-00867-z

Keywords