Skip to main content
Log in

Recycling of multi-source waste in an aggregate circular economy

  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

We investigate how the relationship between capital accumulation and pollution is affected by the source of pollution: production or consumption. We are interested in polluting waste that cannot be naturally absorbed, but for which recycling efforts aim to avoid massive pollution accumulation with harmful consequences in the long run. Based on both environmental and social welfare perspectives, we determine how the interaction between growth and polluting waste accumulation is affected by the source of pollution, i.e., either consumption or production, and by the fact that recycling may or may not act as an income generator, i.e., either capital-improving or capital-neutral recycling efforts. Several new results are extracted regarding optimal recycling policy and the shape of the relationship between production and pollution. Beside the latter concern, we show both analytically and numerically that the optimal control of waste through recycling allows to reaching larger (resp., lower) consumption and capital stock levels under consumption-based waste compared to production-based waste while the latter permits to reach lower stocks of waste through lower recycling efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. See https://www.pyrum.net/en/about-us/technology.

  2. Indeed, the EKC literature is huge (e.g., Boucekkine et al. 2013), and there are thousands of cases studied with different ingredients (abatement, recycling, multisectoral economy, circular or not, etc.), which each features a different case for non-monotonicity with the corresponding underlying mechanisms. In our paper, we use “EKC-like” for any capital-waste trajectory that is not monotonic. Of course, our model needs not have the same associated dynamics per variable that we find in the classical case, precisely because we rely on different variables and different income generation mechanisms.

  3. We warmly thank a Referee for raising this point.

References

  • Acerbi F, Taisch M (2020) A literature review on circular economy adoption in the manufacturing sector. J Clean Prod 273:123086

    Article  Google Scholar 

  • Barnes DKA (2002) Invasions by marine life on plastic debris. Nature 416:808–809

    Article  Google Scholar 

  • Barros MV, Salvador R, de Francisco AC, Piekarski CM (2020) Mapping of research lines on circular economy practices in agriculture: from waste to energy. Renew Sustain Energy Rev 131:109958

    Article  Google Scholar 

  • Battini D, Bogataj M, Choudhary A (2017) Introduction to the special issue on closed loop supply chain (CLSC): economics, modelling, management and control. Int J Prod Econ 183:319–321

    Article  Google Scholar 

  • Boucekkine R, El Ouardighi F (2016) Optimal growth with pollution waste and recycling. In: Feichtinger G (ed) Dynamic perspectives on managerial decision making. Springer

    Google Scholar 

  • Boucekkine R, Pommeret A, Prieur F (2013) Technological vs. ecological switch and the environmental Kuznets curve. Am J Agric Econ 95(2):252–260

    Article  Google Scholar 

  • Boucekkine R, Hritonenko N, Yatsenko Y (2014) Optimal investment in heterogeneous capital and technology under restricted natural resource. J Optim Theory Appl 163:310–331

    Article  Google Scholar 

  • de Bruyn S, Opschoor J (1997) Developments in the throughput-income relationship: theoretical and empirical observations. Ecol Econ 20(3):255–268

    Article  Google Scholar 

  • Derigs U, Friederichs S (2009) On the application of a transportation model for revenue optimization in waste management: a case study. CEJOR 17:81–93

    Article  Google Scholar 

  • Dockner E (1985) Local stability in optimal control problems with two state variables. In: Feichtinger G (ed) Optimal control theory and economic analysis, vol 2. North Holland

    Google Scholar 

  • Dockner E, Feichtinger G (1991) On the optimality of limit cycles in dynamic economic systems. J Econ 53(1):31–50

    Article  Google Scholar 

  • Doonan J, Lanoie P, Laplante B (2005) Determinants of environmental performance in the Canadian pulp and paper industry: an assessment from inside the industry. Ecol Econ 55(1):73–84

    Article  Google Scholar 

  • El Ouardighi F, Sim JE, Kim B (2016) Pollution accumulation and abatement policy in a supply chain. Eur J Oper Res 248(3):982–996

    Article  Google Scholar 

  • El Ouardighi F, Sim JE, Kim B (2021) Pollution accumulation and abatement policies in two supply chains under vertical and horizontal competition and strategy types. Omega 98(102108):1–19

    Google Scholar 

  • Eriksen M, Maximenko N, Thiel M, Cummins A, Lattin G, Wilson S, Hafner J, Zellers A, Rifman S (2013) Plastic pollution in the South Pacific subtropical gyre. Mar Pollut Bull 68(1–2):71–76

    Article  Google Scholar 

  • Eriksen M, Cowger W, Erdle LM, Coffin S, Villarrubia-Gómez P, Moore CJ et al (2023) A growing plastic smog, now estimated to be over 170 trillion plastic particles afloat in the world’s oceans—urgent solutions required. PLoS ONE 18(3):e0281596. https://doi.org/10.1371/journal.pone.0281596

    Article  Google Scholar 

  • Fodha M, Magris F (2015) Recycling waste and endogenous fluctuations in an OLG model. Int J Econ Theory 11(4):405–427

    Article  Google Scholar 

  • Geissdoerfer M, Pieroni MPP, Pigosso DCA, Soufani K (2020) Circular business models: a review. J Clean Prod 277:123741

    Article  Google Scholar 

  • Grass D, Caulkins JP, Feichtinger G, Tragler G, Behrens DA (2008) Optimal control of nonlinear processes with applications in drugs, corruption, and terror. Springer

    Book  Google Scholar 

  • Hartl RH, Sethi SP, Vickson RG (1995) A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev 37(2):181–218

    Article  Google Scholar 

  • Hrabec D, Kudela J, Somplak R, Nevrly V, Popela P (2020) Circular economy implementation in waste management network design problem: a case study. CEJOR 28:1441–1458

    Article  Google Scholar 

  • Jacobs B, Singhal V, Subramanian R (2010) An empirical investigation of environmental performance and the market value of the firm. J Oper Manag 28(5):430–441

    Article  Google Scholar 

  • Law K, Moret-Ferguson S, Maximenko N, Proskurowski G, Peacock E, Hafner J, Reddy CM (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329(5996):1185–1188

    Article  Google Scholar 

  • Lusky R (1976) A model of recycling and pollution control. Can J Econ 9(1):91–101

    Article  Google Scholar 

  • Martin RE (1982) Monopoly power and the recycling of raw materials. J Ind Econ 30(4):104–419

    Article  Google Scholar 

  • Nakamura S (1999) An interindustry approach to analyzing economic and environmental effects of the recycling of waste. Ecol Econ 28:133–145

    Article  Google Scholar 

  • Pati RK, Vrat P, Kumar P (2006) Economic analysis of paper recycling vis-à-vis wood as raw material. Int J Prod Econ 103(2):489–508

    Article  Google Scholar 

  • PlasticsEurope (2015) Plastics—the facts 2014/2015. An analysis of European plastics production, demand and waste data. Belgium

  • Seierstad A, Sydsæter K (1987) Optimal control theory with economic applications. North Holland

    Google Scholar 

  • Sengupta RP (1997) CO2 emission—income relationship: policy approach for climate control. Pac Asia J Energy 7(2):207–229

    Google Scholar 

  • Sephton P, Mann J (2016) Compelling evidence of an environmental Kuznets curve in the United Kingdom. Environ Resour Econ 64(2):301–315

    Article  Google Scholar 

  • Sheu JB (2007) A coordinated reverse logistics system for regional management of multi-source hazardous wastes. Comput Oper Res 34(5):1442–1462

    Article  Google Scholar 

  • Simpson D (2012) Institutional pressure and waste reduction: the role of investments in waste reduction resources. Int J Prod Econ 139(1):330–339

    Article  Google Scholar 

  • Stokey N (1998) Are there limits to growth? Int Econ Rev 39(1):1–31

    Article  Google Scholar 

  • Suhandi V, Chen PS (2023) Closed-loop supply chain inventory model in the pharmaceutical industry toward a circular economy. J Clean Prod 383:135474

    Article  Google Scholar 

  • Verma R, Vinoda KS, Papireddy M, Gowda ANS (2016) Toxic pollutants from plastic waste—a review. Procedia Environ Sci 35:701–708

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad El Ouardighi.

Ethics declarations

Conflict of interest

The authors ensure that no conflict of interest is directly or indirectly related to this study. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A1

The Legendre-Clebsch condition of joint concavity of the Hamiltonian with respect to the control variables is satisfied, because the Hessian \(\left[ {\begin{array}{*{20}c} {H_{cc} } & {H_{cv} } \\ {H_{vc} } & {H_{vv} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 1} & 0 \\ 0 & { - 1} \\ \end{array} } \right]\) is negative definite. This guarantees a maximum of the Hamiltonian. Plugging the expressions of \(c\) and \(v\) respectively from (7) and (8) in (4) gives the maximized Hamiltonian:

$$H^{0} = \frac{{\left( {\theta - \lambda + \mu \beta } \right)^{2} }}{2} + \frac{{\left( {\lambda \varphi - \mu } \right)^{2} }}{2} + \lambda aK - \frac{{eW^{2} }}{2}$$

from which the Hessian \(\left[ {\begin{array}{*{20}c} {H_{KK} } & {H_{KW} } \\ {H_{WK} } & {H_{WW} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & { - e} \\ \end{array} } \right]\) is negative semi-definite. This ensures that the necessary conditions are sufficient for optimality and thus the existence of a globally optimal solution. □

1.2 A2

The proof is by contradiction. Assume a time point \(t\) such that the costate \(\mu \ge 0\) and the transversality condition holds. Then, Eq. (6) implies that \(\mu\) can grow only at a rate greater than \(r\). Therefore, the transversality condition will never be met. Such a point cannot exist, i.e., \(\mu < 0\). The result for \(\lambda\) is derived in a similar way. Because we assume that \(r < a\), starting from any \(\lambda \left( 0 \right)\), \(\lambda\) always tends to zero. □

1.3 A3

Differentiating (9), we find that \(d\beta c - dv = 0\) if:

$$- d\lambda \left( {\beta + \varphi } \right) + d\mu \left( {1 + \beta^{2} } \right) = - \left( {r - a} \right)\lambda \left( {\beta + \varphi } \right)dt + \left( {r\mu dt + eWdt - d\eta } \right)\left( {1 + \beta^{2} } \right) = 0$$

and, with respect to \(W = 0\), we have:

$$\dot{\eta } = r\mu - \frac{{\left( {\beta + \varphi } \right)\left( {r - a} \right)\lambda }}{{1 + \beta^{2} }}$$
(A3.1)

Since \(r < a\), \(\dot{\eta } \ge 0\) when \(\lambda \ge 0\) and \(\mu \ge 0\), which with respect to (9) requires:

$$\frac{\beta \theta }{{\beta + \varphi }} \le \lambda$$
(A3.2)

which holds only for positive \(\lambda\). Such a solution is clearly feasible, if \(c > 0\) and \(v > 0\) and implies \(\lambda\) remains positive and tends to zero while \(\mu\) grows over time and satisfies the transversality condition by a growing negative jump. Next, we verify when the controls are feasible by substituting \(\mu\) with respect to (9). Specifically, \(c \ge 0\) if:

$$c = \theta - \lambda + \beta \mu = \theta - \lambda + \frac{{\beta \left[ {\left( {\beta + \varphi } \right)\lambda - \beta \theta } \right]}}{{1 + \beta^{2} }} = \theta \left( {1 - \frac{{\beta^{2} }}{{1 + \beta^{2} }}} \right) + \left( {\frac{\beta + \varphi }{{1 + \beta^{2} }} - 1} \right)\lambda \ge 0$$

or if:

$$\left( {1 + \beta^{2} - \beta - \varphi } \right)\lambda \le 0$$
(A3.3)

and \(v = \varphi \lambda - \mu = \varphi \lambda - \frac{{\left( {\beta + \varphi } \right)\lambda - \beta \theta }}{{1 + \beta^{2} }} = \frac{{\varphi \left( {1 + \beta^{2} } \right)\lambda - \left( {\beta + \varphi } \right)\lambda + \beta \theta }}{{1 + \beta^{2} }}\), that is:

$$\left[ {\varphi \left( {1 + \beta^{2} } \right) - \left( {\beta + \varphi } \right)} \right]\lambda \ge - \beta \theta$$
(A3.4)

Let \(\varphi \left( {1 + \beta^{2} } \right) - \left( {\beta + \varphi } \right) \le 0\), then (A3.4) always holds and (A3.4) along with (A3.2) results in:

$$\frac{\beta \theta }{{\beta + \varphi }} \le \lambda \le \frac{\beta \theta }{{\beta + \varphi - \varphi \left( {1 + \beta^{2} } \right)}}$$
(A3.5)

Since \(r < a\), \(\lambda\) always decreases to zero and the left-hand side will not hold, i.e., \(\beta c - v > 0\). Therefore, \(W\) increases. Letting \(1 + \beta^{2} - \beta - \varphi > 0\), then if \(\varphi \left( {1 + \beta^{2} } \right) - \left( {\beta + \varphi } \right) \le 0\) still holds, we get the same result, \(W\) increases. If \(\varphi \left( {1 + \beta^{2} } \right) - \left( {\beta + \varphi } \right) > 0\), then (A3.4) holds. Consequently, (A3.3) along with (A3.2) results in:

$$\frac{\beta \theta }{{\beta + \varphi }} \le \lambda \le \frac{\theta }{{1 + \beta^{2} - \beta - \varphi }}$$
(A3.6)

Again, \(W\) will eventually increase. Thus, \(W = 0\) can occur only during a finite interval. Finally, while \(W = 0\), \(K\) may decrease to zero if \(\varphi < \frac{1}{\beta }\).

Regarding the fact that \(K\left( 0 \right) = 0\) can be maintained when \(W\left( 0 \right) > 0\) only over a finite time interval, this requires a jump as given by (9). The jump is due to requiring \(\dot{K} = 0\), that is:

$$\varphi v - c = - \left( {\theta - \lambda + \mu \beta } \right) + \varphi \left( {\lambda \varphi - \mu } \right) = - \theta + \left( {1 + \varphi^{2} } \right)\lambda - \left( {\varphi + \beta } \right)\mu = 0$$
(A3.7)

which, when differentiating to ensure \(dc - d\varphi v = 0\), results in:

$$d\lambda \left( {1 + \varphi^{2} } \right) - d\mu \left( {\varphi + \beta } \right) = \left( {rdt - adt - d\eta } \right)\lambda \left( {1 + \varphi^{2} } \right) + \left( {r\mu + eW} \right)\left( {\varphi + \beta } \right)dt = 0$$
(A3.8)

Finally, to have \(K = 0\) and \(W = 0\) concurrently along with \(v > 0\) and \(c > 0\) over an interval of time, we need \(\dot{K} = 0\) and \(\dot{W} = 0\), i.e., \(\varphi = 1/\beta\). Assuming that \(\varphi \ne 1/\beta\), this would apparently not be possible. Let \(\beta \varphi > 1\). If both \(W = 0\) and \(K = 0\) at a point in time, then from that point on, the nil solution, i.e., no recycling and no consumption, is optimal over the entire time horizon. Note that \(\dot{K} = aK - c + \varphi v < 0\) and \(\dot{W} = \beta c - v < 0\), if \(\beta c < v < \frac{c - aK}{\varphi }\). This implies that if \(K\) is small and \(\beta < 1\), then it is possible that \(\dot{W} < 0\) and \(\dot{K} < 0\) occurs starting from some point in time so that both \(K\) and \(W\) will become equal to zero. Note that, in practice, this solution corresponds to a negative capital state. □

1.4 A4

Equating the RHS of (9)-(10)-(5)-(6) to 0 and solving by identification and substitution, we get \(\lambda^{S} = 0\) and \(\mu^{S} = - \frac{\beta \theta }{{1 + \beta^{2} }}\) and \(K^{S}\) and \(W^{S}\) as given in (11). Plugging these expressions in (7) and (8), respectively, and simplifying yields \(c^{S}\) and \(v^{S}\) in (11). From (11), it can be shown that the limiting transversality conditions are satisfied for the saddle-paths because:

$$\mathop {\lim }\limits_{t \to \infty } e^{ - rt} \lambda \left( t \right)K\left( t \right) = 0$$
$$\mathop {\lim }\limits_{t \to \infty } e^{ - rt} \mu \left( t \right)W\left( t \right) = \mathop {\lim }\limits_{t \to \infty } \frac{{ - r\beta^{2} \theta^{2} e^{ - rt} }}{{e\left( {1 + \beta^{2} } \right)^{2} }} = 0$$

This ensures the uniqueness of the globally optimal solution. □

1.5 A5

To analyze the stability of the canonical system (10)-(11)-(5)-(6), we write the Jacobian:

$$J = \left[ {\begin{array}{*{20}l} a \hfill & 0 \hfill & {1 + \varphi^{2} } \hfill & { - \beta - \varphi } \hfill \\ 0 \hfill & 0 \hfill & { - \beta - \varphi } \hfill & {1 + \beta^{2} } \hfill \\ 0 \hfill & 0 \hfill & {r - a} \hfill & 0 \hfill \\ 0 \hfill & e \hfill & 0 \hfill & r \hfill \\ \end{array} } \right]$$

Given that \(\lambda\) and \(\mu\) are evaluated at their steady state value, we compute the determinant:

$$\left| J \right| = ae\left( {a - r} \right)\left( {1 + \beta^{2} } \right)$$

which has a positive value for \(r < a\). Using Dockner’s formula (Dockner 1985), we determine the sum of the principal minors of \(J\) of order 2 minus the squared discounting rate, that is:

$${\Psi } = - a\left( {a - r} \right) - e\left( {1 + \beta^{2} } \right)$$

The necessary and sufficient conditions that ensure that two eigenvalues have negative real parts and two have positive real parts, which corresponds to the case of a two-dimensional stable manifold, are \(\left| J \right| > 0\) and \({\Psi } < 0\). The sign of \({\Psi }\) is negative whenever \(r < a\), which implies that a two-dimensional stable manifold (saddle-point) exists in the case of a sufficiently patient social planner. To determine whether the optimal path is monotonic or oscillatory, we compute the expression (Dockner 1985):

$${\Omega } = {\Psi }^{2} - 4\left| J \right| = \left[ {a\left( {a - r} \right) - e\left( {1 + \beta^{2} } \right)} \right]^{2}$$

A positive (negative) sign of \({\Omega }\) indicates that convergence to the saddle-point is monotonic (spiraling) near the steady state. Because \({\Omega } > 0\), the convergence to the saddle-point is monotonic near the steady state. □

1.6 A6

Differentiating (7) with respect to time, we get:

$$\dot{c} = - \dot{\lambda } + \beta \dot{\mu } = - \left( {r - a} \right)\lambda + \beta \left( {r\mu + eW} \right)$$
(A6.1)

which, when differentiating again, leads to:

$$\ddot{c} = - \left( {r - a} \right)^{2} \lambda + \beta \left[ {r\left( {r\mu + eW} \right) + e\dot{W}} \right]$$
(A6.2)

Substituting \(\beta \left( {r\mu + eW} \right)\) from (A6.1) and \(\dot{W}\) from the state Eq. (3), we have:

$$\ddot{c} = r\dot{c} + a\left( {r - a} \right)\lambda + \beta e\left( {\beta c - v} \right)$$

Similarly, from (8), we obtain:

$$\dot{v} = \varphi \left( {r - a} \right)\lambda - \left( {r\mu + eW} \right)$$

which, differentiated again, gives:

$$\ddot{v} = \varphi \left( {r - a} \right)^{2} \lambda - \left[ {r\left( {r\mu + eW} \right) + e\dot{W}} \right] = \varphi \left( {r - a} \right)^{2} \lambda + \left[ {r\varphi \left( {r - a} \right)\lambda - e\left( {\beta c - v} \right)} \right]$$

Thus, accounting for \(\lambda \left( t \right) = Ge^{{\left( {r - a} \right)t}}\), we get (13)–(14). The transient path converging to a steady state can then be found with the boundary conditions:

$$\begin{aligned} & \dot{v}\left( 0 \right) = \varphi \left( {r - a} \right)G - \left( {r\mu \left( 0 \right) + eW\left( 0 \right)} \right),\quad \dot{c} = - \left( {r - a} \right)G + \beta \left( {r\mu \left( 0 \right) + eW\left( 0 \right)} \right), \\ & \ddot{c}\left( 0 \right) = r\dot{c}\left( 0 \right) + a\left( {r - a} \right)G + \beta e\left( {\beta c\left( 0 \right) - v\left( 0 \right)} \right),\quad c\left( 0 \right) = \theta - G + \beta \mu \left( 0 \right), \\ & \ddot{v}\left( 0 \right) = r\dot{v}\left( 0 \right) - a\varphi \left( {r - a} \right)G - e\left( {\beta c\left( 0 \right) - v\left( 0 \right)} \right),\quad v\left( 0 \right) = \varphi G - \mu \left( 0 \right), \\ & \ddot{c} = - \left( {r - a} \right)^{2} \lambda \left( 0 \right) + \beta \left[ {r\left( {r\mu \left( 0 \right) + eW\left( 0 \right)} \right) + e\dot{W}\left( 0 \right)} \right],\quad \dot{W}\left( 0 \right) = \beta c\left( 0 \right) - v\left( 0 \right), \\ & \ddot{v}\left( 0 \right) = \varphi \left( {r - a} \right)^{2} \lambda \left( 0 \right) - \left[ {r\left( {r\mu \left( 0 \right) + eW\left( 0 \right)} \right) + e\dot{W}\left( 0 \right)} \right].\quad \square \\ \end{aligned}$$

1.7 A7

The Legendre–Clebsch condition of concavity of the Hamiltonian with respect to the control variables is satisfied, as \(\left[ {\begin{array}{*{20}c} {H_{cc} } & {H_{cv} } \\ {H_{vc} } & {H_{vv} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 1} & 0 \\ 0 & { - 1} \\ \end{array} } \right]\) is negative definite. This guarantees a maximum of the Hamiltonian. Plugging the respective expressions of \(c\) and \(v\) in (4) gives the maximized Hamiltonian:

$$H^{0} = \frac{{\left( {\theta - \lambda } \right)^{2} }}{2} + \frac{{\left( {\lambda \varphi - \mu } \right)^{2} }}{2} + \left( {\lambda + \kappa \mu } \right)aK - \frac{{eW^{2} }}{2}$$

from which the Hessian matrix: \(\left[ {\begin{array}{*{20}c} {H_{KK} } & {H_{KW} } \\ {H_{WK} } & {H_{WW} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & { - e} \\ \end{array} } \right]\) is negative semi-definite. This ensures that the necessary conditions are also sufficient for optimality. □

1.8 A8

The proof is identical to that for Lemma 2. □

1.9 A9

Let \(W = 0\) and \(K = 0\), \(v = 0\) and \(c = 0\) due to \(\varphi \lambda - \mu \le 0\) and \(c = \theta - \lambda \le 0\), that is:

$$\theta \le \lambda \le \mu /\varphi$$
(A9.1)

Then, both \(\lambda > 0\) and \(\mu > 0\) to meet (A9.1) and if:

$$\mu /\varphi > \theta$$
(A9.2)

then (A9.1) can be feasible. Accordingly, to maintain \(W = 0\) and \(K = 0\), we need to keep \(v = 0\) and \(c = 0\) which, with respect to (18) and (19), leads to:

$$dv = \varphi d\lambda - d\mu = \varphi \left[ {\left( {r - a} \right)\lambda dt - \mu \kappa adt - d\eta_{1} } \right] - \left( {r\mu dt - d\eta_{2} } \right) \le 0$$

\(dc = - d\lambda = - \left( {r - a} \right)\lambda dt + \mu \kappa adt + d\eta_{1} \le 0\)

Solving this system of inequalities we find:

$$\left( {r - a} \right)\lambda - \mu \kappa a - \frac{{r\mu - \dot{\eta }_{2} }}{\varphi } \le \dot{\eta }_{1}$$
(A9.3)
$$0 \le \dot{\eta }_{2} \le r\mu$$
(A9.4)

where \(\left( {r - a} \right)\lambda - \mu \kappa a - \frac{{r\mu - \dot{\eta }_{2} }}{\varphi } < 0\) due to (A9.4). Thus, \(\dot{\eta }_{1} \ge 0\) and \(0 \le \dot{\eta }_{2} \le r\mu\) hold. Further, from (6) we observe that, starting from a positive value, the growth of \(\mu\) can be fully offset by the maximal jump \(\dot{\eta }_{2} = r\mu\), so that, \(\dot{\mu } = r\mu - r\mu = 0\) which ensures the transversality condition. Further, although according to (A9.3) the optimality conditions can be met with a zero jump, \(\dot{\eta }_{1} = 0\), \(\lambda\) always decreases. Starting from a positive \(\lambda\) that satisfies (A9.3), although \(\mu\) is constant, \(\dot{\mu } = 0\), (satisfying (A9.2)), we observe that decreasing \(\lambda\) will inevitably violate (A9.1). However, for an optimal solution to be feasible in terms of the state constraints, we need the capital to grow by reducing consumption, which is already zero. However, an increase in recycling will immediately lead to a negative waste. Thus, there is no feasible solution to complete the paths. □

1.10 A10

Equating the RHS of (20)-(21)-(16)-(17) to 0 and solving by identification and substitution, we get:

$$\lambda^{S} = \frac{{\kappa^{2} \theta a}}{{\left( {1 + \varphi \kappa } \right)\left[ {\left( {1 + \varphi \kappa } \right)a - r} \right] + \kappa^{2} a}}$$
$$\mu^{S} = - \frac{{\kappa \theta \left( {a - r} \right)}}{{\left( {1 + \varphi \kappa } \right)\left[ {\left( {1 + \varphi \kappa } \right)a - r} \right] + \kappa^{2} a}}$$

along with \(K^{S}\) and \(W^{S}\) as given in (11). Note that \(r < a\) implies that \(r < \left( {1 + \kappa a} \right)a\), which ensures a feasible steady state. Plugging the expressions in (18) and (19), respectively, and simplifying, yields \(c^{S}\) and \(v^{S}\) in (22). From (22), the limiting transversality conditions are satisfied for the saddle-paths because:

$$\mathop {\lim }\limits_{t \to \infty } e^{ - rt} \lambda \left( t \right)K\left( t \right) = \mathop {\lim }\limits_{t \to \infty } \frac{{\kappa^{2} \theta^{2} a\left[ {\left( {1 + \varphi \kappa } \right)a - r} \right]e^{ - rt} }}{{a\left\{ {\left( {1 + \varphi \kappa } \right)\left[ {\left( {1 + \varphi \kappa } \right)a - r} \right] + \kappa^{2} a} \right\}^{2} }} = 0$$
$$\mathop {\lim }\limits_{t \to \infty } e^{ - rt} \mu \left( t \right)W\left( t \right) = \mathop {\lim }\limits_{t \to \infty } \frac{{ - r\kappa^{2} \theta^{2} \left( {a - r} \right)^{2} e^{ - rt} }}{{e\left\{ {\left( {1 + \varphi \kappa } \right)\left[ {\left( {1 + \varphi \kappa } \right)a - r} \right] + \kappa^{2} a} \right\}^{2} }} = 0$$

This ensures the uniqueness of the globally optimal solution. □

1.11 A11

The Jacobian matrix of the canonical system (21)-(22)-(16)-(17) is:

$$J = \left[ {\begin{array}{*{20}l} a \hfill & 0 \hfill & {1 + \varphi^{2} } \hfill & { - \varphi } \hfill \\ {\kappa a} \hfill & 0 \hfill & { - \varphi } \hfill & 1 \hfill \\ 0 \hfill & 0 \hfill & {r - a} \hfill & { - \kappa a} \hfill \\ 0 \hfill & e \hfill & 0 \hfill & r \hfill \\ \end{array} } \right]$$

Given that \(\lambda\) and \(\mu\) are evaluated at their steady state value, we compute the determinant:

$$\left| J \right| = ae\left\{ {\left( {1 + \varphi \kappa } \right)\left[ {\left( {1 + \varphi \kappa } \right)a - r} \right] + \kappa^{2} a} \right\}$$

which is positive for \(r < a\), and the sum of the principal minors of \(J\) of order 2 minus the squared discounting rate:

$${\Psi } = - a\left( {a - r} \right) - e$$

which is negative. Both signs imply that a two-dimensional stable manifold (saddle-point) exists. To check whether the optimal path is monotonic or cyclical, we compute:

$${\Omega } = \left[ {a\left( {a - r} \right) + e} \right]^{2} - 4ae\left\{ {\left( {1 + \varphi \kappa } \right)\left[ {\left( {1 + \varphi \kappa } \right)a - r} \right] + \kappa^{2} a} \right\}$$

Because the sign of \({\Omega }\) is ambiguous, a limit value analysis highlights the role of \(a\), \(e\), \(\varphi\), and \(\alpha\) in the sign of \({\Omega }\) for a given \(r < a\) (see Table

Table 4 Limit value analysis

4). The results suggest that \({\Omega }\) can be either positive or negative depending on the parameters value. For any given \(a\) and \(e\), convergence is monotonic near the steady state. However, \(\mathop {\lim }\limits_{{\kappa \to 0^{ + } }} {\Omega } > 0\) and \(\mathop {\lim }\limits_{\kappa \to \infty } {\Omega } = - \infty\), as well as \(\partial {\Omega }/\partial \alpha < 0\), which implies that there is a threshold \(\tilde{\kappa } > 0\) such that for any \(\kappa > \tilde{\kappa }\) (\(\kappa < \tilde{\kappa }\)), we have \({\Omega } < 0\) (\({\Omega } > 0\)).

A similar result is obtained for \(\varphi\), i.e., for a high value of \(\tilde{\varphi } > 0\) such that for any \(\varphi > \tilde{\varphi }\), we get \({\Omega } < 0\). □

1.12 A12

Comparing \(c_{{\left| {\kappa = 0} \right.}}^{S}\) from (12) and \(c_{{\left| {\beta = 0} \right.}}^{S}\) from (22), for \(\varphi = 0\) and \(\kappa = \beta > 0\), \(\kappa^{2} a > \beta^{2} \left( {a - r} \right)\), proves (22)–(26). □

1.13 A13

To compute the numerical solution of the consumption and production-based waste generation optimal control problems, we solve the related Hamilton–Jacobi–Bellman (HJB) equations, that is:

$$rV^{1} = c\left( {\theta - \frac{c}{2}} \right) - \frac{{eW^{2} }}{2} - \frac{{v^{2} }}{2} + V_{K}^{1} \left( {aK - c + \varphi v} \right) + V_{W}^{1} \left( {\beta c - v} \right)$$

for consumption-based waste generation, and:

$$rV^{2} = c\left( {\theta - \frac{c}{2}} \right) - \frac{{eW^{2} }}{2} - \frac{{v^{2} }}{2} + V_{K}^{2} \left( {aK - c + \varphi v} \right) + V_{W}^{2} \left( {\kappa aK - v} \right)$$

for production-based waste generation, where \(V^{i} \left( {K,W} \right)\), \(i = 1,2\), are the value functions respectively associated with the consumption and production-based waste generation optimal control problems. Assuming interior solutions, the necessary conditions are:

$$c = \theta - V_{K}^{1} + \beta V_{W}^{1} ,\quad v = \varphi V_{K}^{1} - V_{W}^{1}$$

for consumption-based waste generation, and:

$$c = \theta - V_{K}^{2} ,\quad v = \varphi V_{K}^{2} - V_{W}^{2}$$

for production-based waste generation. Using the necessary conditions, respectively, we get:

$$rV^{1} = \frac{{\left( {\theta + \beta V_{W}^{1} - V_{K}^{1} } \right)^{2} }}{2} - \frac{{\left( {\varphi V_{K}^{1} - V_{W}^{1} } \right)^{2} }}{2} - \frac{{eW^{2} }}{2} + aV_{K}^{1} K$$

for consumption-based waste generation, and:

$$rV^{2} = \frac{{\left( {\theta - V_{K}^{2} } \right)^{2} }}{2} - \frac{{\left( {\varphi V_{K}^{2} - V_{W}^{2} } \right)^{2} }}{2} - \frac{{eW^{2} }}{2} + a\left( {V_{K}^{2} + \kappa V_{W}^{2} } \right)K$$

for production-based waste generation. For the value functions, we consider the following conjectures:

$$V^{1} = \psi_{1} + \psi_{2} K + \psi_{3} W + \psi_{4} K^{2} + \psi_{5} W^{2} + \psi_{6} KW$$

for consumption-based waste generation, where \(\psi_{1} , \ldots ,\psi_{6}\) are real parameters, and:

$$V^{2} = \xi_{1} + \xi_{2} K + \xi_{3} W + \xi_{4} K^{2} + \xi_{5} W^{2} + \xi_{6} KW$$

for production-based waste generation, where \(\xi_{1} , \ldots ,\xi_{6}\) are real parameters.

Depending on whether the waste generation results from consumption or production, one solves a system of 6 algebraic equations in 6 unknowns in each case, that is:

$$r\xi_{1} - \frac{{\left( {\theta + \xi_{2} } \right)^{2} }}{2} - \frac{{\left( {\varphi \xi_{2} - \xi_{3} } \right)^{2} }}{2} - \beta \left( {\theta - \xi_{2} + \frac{{\beta \xi_{3} }}{2}} \right)\xi_{3} = 0$$
$$r\xi_{3} - 2\left[ {\beta \theta - \left( {\beta + \varphi } \right)\xi_{2} + \left( {1 + \beta^{2} } \right)\xi_{3} } \right]\xi_{5} + \left[ {\theta - \left( {1 + \varphi^{2} } \right)\xi_{2} + \left( {\beta + \varphi } \right)\xi_{3} } \right]\xi_{6} = 0$$
$$\left( {r - a} \right)\xi_{2} + 2\left[ {\theta - \left( {1 + \varphi^{2} } \right)\xi_{2} + \left( {\beta + \varphi } \right)\xi_{3} } \right]\xi_{4} - \left[ {\beta \theta + \left( {\beta + \varphi } \right)\xi_{2} + \left( {1 + \beta^{2} } \right)\xi_{3} } \right]\xi_{6} = 0$$
$$\left( {r - a} \right)\xi_{6} + 2\left[ {2\left( {\beta + \varphi } \right)\xi_{5} - \left( {1 + \varphi^{2} } \right)\xi_{6} } \right]\xi_{4} - \left[ {2\left( {1 + \beta^{2} } \right)\xi_{5} - \left( {\beta + \varphi } \right)\xi_{6} } \right]\xi_{6} = 0$$
$$r\xi_{4} - 2\left[ {a + \left( {1 + \varphi^{2} } \right)\xi_{4} - \left( {\beta + \varphi } \right)\xi_{6} } \right]\xi_{4} - \left( {1 + \beta^{2} } \right)\frac{{\xi_{6}^{2} }}{2} = 0$$
$$\left[ {r - 2\left( {1 + \beta^{2} } \right)\xi_{5} } \right]\xi_{5} + \left[ {2\left( {\beta + \varphi } \right)\xi_{5} - \left( {1 + \varphi^{2} } \right)\frac{{\xi_{6} }}{2}} \right]\xi_{6} + \frac{e}{2} = 0$$

for consumption-based waste generation, and:

$$r\psi_{1} - \frac{{\left( {\theta + \psi_{2} } \right)^{2} }}{2} - \frac{{\left( {\varphi \psi_{2} + \psi_{3} } \right)^{2} }}{2} = 0$$
$$r\psi_{3} - \left( {1 + \varphi^{2} } \right)\psi_{2} \psi_{6} + \left( {\theta + \varphi \psi_{3} } \right)\psi_{6} - 2\left( {\psi_{3} - \varphi \psi_{2} } \right)\psi_{5} = 0$$
$$\left[ {r - a - 2\left( {1 + \varphi^{2} } \right)\psi_{4} + \varphi \psi_{6} } \right]\psi_{2} - \left( {\kappa a + \psi_{6} } \right)\psi_{3} + 2\left( {\theta + \varphi \psi_{3} } \right)\psi_{4} = 0$$
$$- 2\left( {\kappa a - 2\varphi \psi_{4} } \right)\psi_{5} + \left[ {r - a - 2\left( {1 + \varphi^{2} } \right)\psi_{4} - 2\psi_{5} + \varphi \psi_{6} } \right]\psi_{6} = 0$$
$$\left[ {r - 2\left( {1 + a + \varphi^{2} \psi_{4} } \right)} \right]\psi_{4} - \left( {\kappa a - 2\varphi \psi_{4} - \frac{{\psi_{6} }}{2}} \right)\psi_{6} = 0$$
$$\left[ {r - 2\left( {\psi_{5} - \varphi \psi_{6} } \right)} \right]\psi_{5} - \frac{{\left( {1 + \varphi^{2} } \right)\psi_{6}^{2} }}{2} + \frac{e}{2} = 0$$

for production-based waste generation. In general, each system of algebraic equations above may admit zero, one or more solutions. An admissible solution for each system, if any, should satisfy the global asymptotic stability criterion. The necessary conditions for consumption-based waste generation rewrite:

$$c = \theta - \psi_{2} + \beta \psi_{3} - \left( {2\psi_{4} - \beta \psi_{6} } \right)K - \left( {\psi_{6} - 2\beta \psi_{5} } \right)W$$
$$v = \varphi \psi_{2} - \psi_{3} + \left( {2\varphi \psi_{4} - \psi_{6} } \right)K + \left( {\varphi \psi_{6} - 2\psi_{5} } \right)W$$

and the necessary conditions related to production-based waste generation become:

$$c = \theta - \xi_{2} - 2\xi_{4} K - \xi_{6} W$$
$$v = \varphi \xi_{2} - \xi_{3} + \left( {2\varphi \xi_{4} - \xi_{6} } \right)K + \left( {\varphi \xi_{6} - 2\xi_{5} } \right)W$$

Plugging the optimal expressions into the corresponding system of state equations, we get:

$$\dot{K} = - \theta + \left( {1 + \varphi^{2} } \right)\psi_{2} - \left( {\beta + \varphi } \right)\psi_{3} + \left[ {a + 2\left( {1 + \varphi^{2} } \right)\psi_{4} - \left( {\beta + \varphi } \right)\psi_{6} } \right]K - \left[ {2\left( {\beta + \varphi } \right)\psi_{5} - \left( {1 + \varphi^{2} } \right)\psi_{6} } \right]W$$
$$\dot{W} = \beta \theta - \left( {\beta + \varphi } \right)\psi_{2} + \left( {1 + \beta^{2} } \right)\psi_{3} - \left[ {2\left( {\beta + \varphi } \right)\psi_{4} - \left( {1 + \beta^{2} } \right)\psi_{6} } \right]K + \left[ {2\left( {1 + \beta^{2} } \right)\psi_{5} - \left( {\beta + \varphi } \right)\psi_{6} } \right]W$$

for consumption-based waste generation, and:

$$\dot{K} = - \theta + \left( {1 + 2\varphi^{2} } \right)\xi_{2} - \varphi \xi_{3} + \left[ {a + 2\left( {1 + 2\varphi^{2} } \right)\xi_{4} - \varphi \xi_{6} } \right]K + \left[ {\left( {1 + 2\varphi^{2} } \right)\xi_{6} - 2\varphi \xi_{5} } \right]W$$
$$\dot{W} = - \varphi \xi_{2} + \xi_{3} + \left( {\kappa a - 2\varphi \xi_{4} + \xi_{6} } \right)K + \left( {2\xi_{5} - \varphi \xi_{6} } \right)W$$

for production-based waste generation. Imposing a steady state for each state equations system yields:

$$K^{S} = \frac{{\theta \left[ {2\left( {2\beta^{2} + \beta \varphi + 1} \right)\psi_{5} - \left( {\beta \varphi^{2} + 2\beta + \varphi } \right)\psi_{6} } \right] - \left( {1 - \beta \varphi } \right)^{2} \left( {2\psi_{2} \psi_{5} - \psi_{3} \psi_{6} } \right)}}{{\left( {1 - \beta \varphi } \right)^{2} \left( {4\psi_{4} \psi_{5} - \psi_{6}^{2} } \right) + a\left[ {2\left( {1 + \beta^{2} } \right)\psi_{5} - \left( {\beta + \varphi } \right)\psi_{6} } \right]}}$$
$$W^{S} = \frac{{a\left[ {\beta \theta + \left( {\beta + \varphi } \right)\psi_{2} } \right] - a\left( {1 + \beta^{2} } \right)\psi_{3} + \theta \left[ {2\left( {\beta \varphi^{2} + 2\beta + \varphi } \right)\psi_{4} - \left( {2\beta^{2} + \beta \varphi + 1} \right)\psi_{6} } \right] + \left( {1 - \beta \varphi } \right)^{2} \left( {\psi_{2} \psi_{6} - 2\psi_{3} \psi_{4} } \right)}}{{\left( {1 - \beta \varphi } \right)^{2} \left( {4\psi_{4} \psi_{5} - \psi_{6}^{2} } \right) + a\left[ {2\left( {1 + \beta^{2} } \right)\psi_{5} - \left( {\beta + \varphi } \right)\psi_{6} } \right]}}$$

for consumption-based waste generation, and:

$$K^{S} = \frac{{\left( {1 + \varphi^{2} } \right)\left( {2\xi_{2} \xi_{5} - \xi_{3} \xi_{6} } \right) + \theta \left( {\varphi \xi_{6} - 2\xi_{5} } \right)}}{{a\left[ {\left( {\kappa + \varphi + 2\kappa \varphi^{2} } \right)\xi_{6} - 2\left( {1 + \kappa \varphi } \right)\xi_{5} } \right] - \left( {1 + \varphi^{2} } \right)\left( {4\xi_{4} \xi_{5} - \xi_{6}^{2} } \right)}}$$
$$W^{S} = \frac{{a\left[ {\kappa \theta - \left( {2\kappa \varphi^{2} + \kappa + \varphi } \right)\xi_{2} + \left( {1 + \kappa \varphi } \right)\xi_{3} } \right] - \theta \left( {2\varphi \xi_{4} - \xi_{6} } \right) - \left( {1 + \varphi^{2} } \right)\left( {\xi_{2} \xi_{6} - 2\xi_{3} \xi_{4} } \right)}}{{a\left[ {\left( {\kappa + \varphi + 2\kappa \varphi^{2} } \right)\xi_{6} - 2\left( {1 + \kappa \varphi } \right)\xi_{5} } \right] - \left( {1 + \varphi^{2} } \right)\left( {4\xi_{4} \xi_{5} - \xi_{6}^{2} } \right)}}$$

for production-based waste generation. Clearly, the positivity of the steady-state values should hold. Also, the steady-state solution given for each system of state equations, if any, should be globally asymptotically stable. The Jacobian matrix for consumption-based waste generation is:

$$J^{1} = \left[ {\begin{array}{*{20}l} {a + 2\left( {1 + 2\varphi^{2} } \right)\psi_{4} - \left( {\beta + \varphi } \right)\psi_{6} } \hfill & { - 2\left( {\beta + \varphi } \right)\psi_{5} - \left( {1 - \varphi^{2} } \right)\psi_{6} } \hfill \\ { - 2\left( {\beta + \varphi } \right)\psi_{4} + \left( {1 + \beta^{2} } \right)\psi_{6} } \hfill & {2\left( {1 + \beta^{2} } \right)\psi_{5} - \left( {\beta + \varphi } \right)\psi_{6} } \hfill \\ \end{array} } \right]$$

whose trace and determinant are respectively:

$$Tr J^{1} = a + 2\left( {1 + 2\varphi^{2} } \right)\psi_{4} + 2\left( {1 + \beta^{2} } \right)\psi_{5} - 2\left( {\beta + \varphi } \right)\psi_{6}$$
$$\left| { J^{1} } \right| = \left[ {a + 2\left( {1 + 2\varphi^{2} } \right)\psi_{4} - \left( {\beta + \varphi } \right)\psi_{6} } \right]\left[ {2\left( {1 + \beta^{2} } \right)\psi_{5} - \left( {\beta + \varphi } \right)\psi_{6} } \right] - \left[ {2\left( {\beta + \varphi } \right)\psi_{5} + \left( {1 - \varphi^{2} } \right)\psi_{6} } \right]\left[ {2\left( {\beta + \varphi } \right)\psi_{4} - \left( {1 + \beta^{2} } \right)\psi_{6} } \right]$$

On the other hand, the Jacobian matrix for production-based waste generation is:

$$J^{2} = \left[ {\begin{array}{*{20}l} {a + 2\left( {1 + 2\varphi^{2} } \right)\xi_{4} - \varphi \xi_{6} } \hfill & {\left( {1 + 2\varphi^{2} } \right)\xi_{6} - 2\varphi \xi_{5} } \hfill \\ {\kappa a - 2\varphi \xi_{4} + \xi_{6} } \hfill & {2\xi_{5} - \varphi \xi_{6} } \hfill \\ \end{array} } \right]$$

whose trace and determinant are respectively:

$$Tr J^{2} = a + 2\left( {1 + 2\varphi^{2} } \right)\xi_{4} + 2\left( {\xi_{5} - \varphi \xi_{6} } \right)$$
$$\left| { J^{2} } \right| = \left[ {a + 2\left( {1 + 2\varphi^{2} } \right)\xi_{4} - \varphi \xi_{6} } \right]\left( {2\xi_{5} - \varphi \xi_{6} } \right) - \left[ {\left( {1 + 2\varphi^{2} } \right)\xi_{6} - 2\varphi \xi_{5} } \right]\left( {\kappa a - 2\varphi \xi_{4} + \xi_{6} } \right)$$

Based on the global asymptotic stability conditions, that is, \(Tr J^{i} < 0\) and \(\left| { J^{i} } \right| > 0\), \(i = 1,2\), the solution of \(\psi_{1} , \ldots ,\psi_{6}\) for consumption-based waste generation, and \(\xi_{1} , \ldots ,\xi_{6}\) for production-based waste generation can be selected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boucekkine, R., El Ouardighi, F. & Kogan, K. Recycling of multi-source waste in an aggregate circular economy. Cent Eur J Oper Res 32, 357–398 (2024). https://doi.org/10.1007/s10100-023-00886-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-023-00886-w

Keywords

Navigation