Skip to main content
Log in

On min-norm and min-max methods of multi-objective optimization

  • Published:
Mathematical Programming Submit manuscript

Abstract.

This paper examines Pareto optimality of solutions to multi-objective problems scalarized in the min-norm, compromise programming, generalized goal programming, or unrestricted min-max formulations. Issues addressed include, among others, uniqueness in solution or objective space, penalization for over-achievement of goals, min-max reformulation of goal programming, inferiority in Tchebycheff-norm minimization, strength and weakness of weighted-bound optimization, “quasi-satisficing” decision-making, just attaining or even over-passing the goals, trading off by modifying weights or goals, non-convex Pareto frontier. New general necessary and sufficient conditions for both Pareto optimality and weak Pareto optimality are presented. Various formulations are compared in theoretical performance with respect to the goal-point location. Ideas for advanced goal programming and interactive decision-making are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballestero, E., Romero, C.: Multiple Criteria Decision Making and Its Applications to Economic Problems. Boston: Kluwer, 1998

  2. Bowman, V.J. Jr.: On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives. In: Thiriez, H. and Zionts, S. (eds.), Multiple-Criteria Decision Making, New York: Springer-Verlag, 1976, pp. 76–85

  3. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology. New York: North Holland, 1983

  4. Charnes, A., Cooper, W.W.: Management Models and Industrial Applications of Linear Programming. New York: Wiley, 1961

  5. Cohon, J.L.: Multiobjective Programming and Planning. New York: Academic Press, 1978

  6. Das, I., Dennis, J.E.: A Closer Look at Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems. Struct. Optim. 14, 63–69 (1997)

    Google Scholar 

  7. Das, I., Dennis, J.E.: Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  Google Scholar 

  8. Dinkelbach W., Iserman, H.: On Decision Making under Mulriple Criteria and under Incomplete Information. In: Cochrane, J.L. and Zeleny, M. (eds.), Multicriteria Decision Making, Univ. of South Carolina Press, 1973

  9. Ehrgott, M.: Multicriteria Optimization. Berlin: Springer-Verlag, 2000

  10. Eschenauer, H., Koski, J., Osyczka, A.: Multicriteria Optimization – Fundamentals and Motivation. In: Eschenauer, H., Koski, J. and Osyczka, A. (eds.), Multicriteria Design Optimization: Procedures and Applications, New York: Springer-Verlag, 1990, pp. 1–32

  11. Gearhart, W.B.: Compromise Solutions and Estimation of Noninferior Set. J. Optim. Theor. Appl. 28, 29–47 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gembicki, F.W., Haimes, Y.Y.: Approach to Performance and Sensitivity Multiobjective Optimization: The Goal Attainment Method. IEEE Trans. Automat. Contr. AC-20(6), 769–771 (1975)

    Google Scholar 

  13. Hannan, E.L.: An Assessment of Some of the Criticisims of Goal Programming. Comput. Oper. Res. 12(6), 525–541 (1985)

    Article  Google Scholar 

  14. Ignizio, J.P.: Generalized Goal Programming: An Overview. Comput. Oper. Res. 10(4), 277–289 (1983)

    Article  MathSciNet  Google Scholar 

  15. Ijiri, Y.: Management Goals and Accounting for Control. Amsterdam: North Holland Pub., 1965

  16. Jahn, J., Krabs, W.: Applications of Multicriteria Optimization in Approximation Theory. In: Stadler, W. (ed.), Multicriteria Optimiz. in Engg and in the Sciences, vol.37, New York: Plenum, 1988, pp. 49–75

  17. Koopmans, T.C.: Analysis of Production as an Efficient Combination of Activities. In: Koopmans, T.C. (ed.), Activity Analysis of Production and Allocation, New York: Wiley, 1951

  18. Koski, J.:Defectiveness of Weighting Method in Multicriterion Optimization of Structures. Commun. Appl. Numer. Meth. 1, 333–337 (1985)

    MATH  Google Scholar 

  19. Koski, J., Silvennoinen, R.: Norm Methods and Partial Weighting in Multicriterion Optimization of Structures. Intl. J. Numer. Meth. Engin. 24(6), 1101–1121 (1987)

    MathSciNet  Google Scholar 

  20. Koski, J.: Multicriteria Truss Optimization. In: Stadler, W. (ed.), Multicriteria Optimiz. in Engg and in the Sciences, New York: Plenum, 1988, pp. 263–307

  21. Lancaster, P.: Theory of Matrices. New York: Academic Press, 1969, pp. 205

  22. Lawrence, C.T., Tits, A.L.: A Computationally Efficient Feasible Sequential Quadratic Programming Algorithm. Technical Report TR 98-46, Institute Systems Research, Univ. Maryland, College Park, 1998

  23. Lee, S.M.: Goal Programming for Decision Analysis. Philadelphia: Auerbach Publishers, 1972

  24. Lee, S.M., Olson, D.L.: Goal Programming. In: Gal, T., Stewart, T.J. and Hanne, T. (eds.), Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, Boston: Kluwer, 1999, pp. 8-1–8-33

  25. Lightner, M.R., Director, S.W.: Multiple Criterion Optimization for the Design of Electronic Circuits. IEEE Trans. Circuits and Systems CAS-28(3), 169–179 (1981)

    Google Scholar 

  26. Lin, J.G.: Circuit Design under Multiple Performance Objectives. Proc. 1974 IEEE Intl. Symp. Circuits and Systems, 1974, pp. 549–552

  27. Lin, J.G.: Maximal Vectors and Multi-Objective Optimization. J. Optim. Theor. Appl. 18(1), 41–64 (1976)

    Article  Google Scholar 

  28. Lin, J.G.: Three Methods for Determining Pareto-Optimal Solutions of Multiple-Objective Problems. In: Ho, Y.C. and Mitter, S.K. (eds.), Directions in Large-Scale Systems: Many-Person Optimization and Decentralized Control, New York: Plenum, 1976, pp. 117–138

  29. Lin, J.G.: Proper Equality Constraints and Maximization of Index Vectors. J. Optim. Theor. Appl. 20(2), Oct. 1976, 215–244 (1976)

    Google Scholar 

  30. Lin, J.G.: Multiple-Objective Optimization: Proper Equality Constraints (PEC) and Maximization of Index Vectors. In: Leitmann, G. (ed.), Multicriteria Decision Making and Differential Games, New York: Plenum, 1976, chap.V, 1976

  31. Lin, J.G.: Multiple-Objective Problems: Pareto-Optimal Solutions by Method of Proper Equality Constraints. IEEE Trans. Automat. Contr. AC-21(5), Oct. 1976, 641–650 (1976)

    Google Scholar 

  32. Lin, J.G.: Multiple-Objective Optimization by Multiplier Method of Proper Equality Constraints – Part I: Theory. IEEE Trans. Automatic Control 24(4), Aug. 1979, 567–573 (1979)

    Google Scholar 

  33. Miettinen, K.: Nonlinear Multiobjective Optimization. Boston: Kluwer, 1999

  34. Nakayama, H.: On the Components in Interactive Multiobjective Programming Methods. In: Grauer, M., Thompson, M. and Wierzbicki, A.P. (eds.), Plural Rationality and Interactive Decision Processes, Berlin: Springer-Verlag, 1985, pp. 234–247

  35. Nakayama, H.: Engineering Applications of multi-objective Programming: Recent Results. In: Tzeng, G.H. (ed.), Multiple criteria decision making: proceedings of the tenth international conference, New York: Springer-Verlag, 1994, pp. 369–378

  36. Nakayama, H., Sawaragi, Y.: Satisficing Trade-Off Method for Multiobjective Programming. In: Grauer, M. and Wierzbicki, A.P. (eds.), Interactive Decision Analysis, Berlin: Springer-Verlag, 1984, pp. 113–122

  37. Osyczka, A.: Multicriterion Optimization in Engineering with FORTRAN Programs. New York: Wiley & Sons, 1984

  38. Rao, S.S.: Optimization: Theory and Applications, Second Edition. New York: Wiley, 1984

  39. Rao, S.S., Venkayya, V.B., Khot, N.S.: Optimization of Actively Controlled Structures Using Goal Programming Techniques. Intl J. Numer. Meth. Engin. 26(1), 183–197 (1988)

    Google Scholar 

  40. Salukvadze, M.E.: Optimization of Vector Functionals, I. Programming of Optimal Trajectories. Translated from Russian, Avtomatika i Telemekhanika, (8), 5–15 (1971)

  41. Salukvadze, M.E.: Vector-Valued Optimization Problems in Control Theory. New York: Academic Press, 1979

  42. Sawaragi, Y., Nakayama, K., Tanino, T.: Theory of Multiobjective Optimization. Orlando FL: Academic Press, 1985

  43. Schy, A.A., Giesy, D.P., Johnson, K.G.: Pareto-Optimal Multi-Objective Design of Airplane Control Systems. Paper WP1-A, 1980 Joint Automat. Contr. Conf. 1980

  44. Sen, P., Yang, J.-B.: Multiple Criteria Decision Support In Engineering Design. New York: Springer, 1998

  45. Steuer, R.E., Choo, E.-U.: An Interactive Weighted Tchebycheff Procedure for Multiple Objective Programming. Math. Program. 26(3), 326–344 (1983)

    MathSciNet  Google Scholar 

  46. Steuer, R.E.: The Tchebycheff Procedure of Interactive Multiple Objective Programming. In: Karpak, B. and Zionts, S. (eds.), Multiple Criteria Decision Making and Risk Analysis Using Microcomputers, Berlin: Springer-Verlag, 1989, pp. 235–249

  47. Tseng, C.H., Lu, T.W.: Minimax Multiobjective Optimization in Structural Design. Intl J. Numer. Meth. Engin. 30(6), pp.1213–1228 (1990)

  48. Wierzbicki, A.P.: A Mathematical Basis for Satisficing Decision Making. Math. Model. 3(25), 391–405 (1982)

    Article  MathSciNet  Google Scholar 

  49. Wierzbicki, A.P.: A Methodological Approach to Comparing Parametric Characterizations of Efficient Solutions. In: Fandel, G. (ed.), Large-Scale Modelling and Interactive Decision Analysis, Berlin: Springer-Verlag, 1986, pp. 27–45

  50. Wierzbicki, A.P.: Reference Point Approaches. In: Gal, T., Stewart, T.J. and Hanne, T. (eds.), Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, Boston: Kluwer, 1999, pp. 9-1–9-39

  51. Yu, P.L.: A Class of Solutions for Group Decision Problems. Manag. Sci. 19, 936–946 (1973)

    Article  MATH  Google Scholar 

  52. Zadeh, L.A.: Optimality and Non-Scalar-Valued Performance Criteria. IEEE Trans. Automat. Contr. AC-8, 59–60 (1963)

    Google Scholar 

  53. Zeleny, M.: Compromise Programming. In: Cochrane, J.L. and Zeleny, M. (eds.), Multicriteria Decision Making, Univ. of South Carolina Press, 1973, pp. 262–301

  54. Zeleny, M.: A Concept of Compromise Solutions and the Method of Displaced Ideal. Comput. Oper. Res. 1, 479–496 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiGuan G. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J. On min-norm and min-max methods of multi-objective optimization. Math. Program. 103, 1–33 (2005). https://doi.org/10.1007/s10107-003-0462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0462-y

Keywords

Navigation