Skip to main content
Log in

Fractionation in radiation treatment planning

  • Published:
Mathematical Programming Submit manuscript

Abstract.

Radiotherapy treatment is often delivered in a fractionated manner over a period of time. Emerging delivery devices are able to determine the actual dose that has been delivered at each stage facilitating the use of adaptive treatment plans that compensate for errors in delivery. We formulate a model of the day-to-day planning problem as a stochastic program and exhibit the gains that can be achieved by incorporating uncertainty about errors during treatment into the planning process. Due to size and time restrictions, the model becomes intractable for realistic instances. We show how heuristics and neuro-dynamic programming can be used to approximate the stochastic solution, and derive results from our models for realistic time periods. These results allow us to generate practical rules of thumb that can be immediately implemented in current planning technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P.: Differential training of rollout policies. In: Proceedings of the 35th Allerton Conference on Communication, Control, and Computing, 1997, Available as PDF document from http://www.mit.edu:8001//people/dmitrib/Diftrain.pdf

  2. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Belmont, Massachusetts, 1996

  3. Bortfeld, T.: Current status of IMRT: physical and technological aspects. Radiother. Oncol. 61 (2), 291–304 (2001)

    Google Scholar 

  4. Bortfeld, T., Schlegel, W.: Optimization of beam orientations in radiation therapy: some theoretical considerations. Phys. Med. Biol. 38 (2), 291–304 (1993)

    Article  Google Scholar 

  5. Bortfeld, T.R., Jiang, S.B., Rietzel, E.: Effects of motion on the total dose distribution. Semin. Radiat. Oncol. 14, 41–51 (2004)

    Article  Google Scholar 

  6. Brahme, A.: Treatment optimization: Using physical and radiobiological objective functions. In: Radiation Therapy Physics, A.R. Smith, (ed.), Springer-Verlag, Berlin, 1995, pp. 209–246

  7. Cho, P.S., Lee, S., Marks, R.J., Oh, S., Sutlief, S., Phillips, H.: Optimization of intensity modulated beams with volume constraints using two methods: cost function minimization and projection onto convex sets. Med. Phys. 25 (4), 435–443 (1998)

    Article  Google Scholar 

  8. D’Souza, W.D., Meyer, R.R., Ferris, M.C., Thomadsen, B.R.: Mixed integer programming models for prostate brachytherapy treatment optimization. Med. Phys. 26 (6), 1099 (1999)

    Google Scholar 

  9. D’Souza, W.D., Meyer, R.R., Thomadsen, B.R., Ferris, M.C.: An iterative sequential mixed-integer approach to automated prostate brachytherapy treatment optimization. Phys. Med. Biol. 46, 297–322 (2001)

    Article  Google Scholar 

  10. Ferris, M.C., Lim, J.-H., Shepard, D.M.: Optimization approaches for treatment planning on a Gamma Knife. SIAM J. Optim. 13, 921–937 (2003)

    Article  MATH  Google Scholar 

  11. Ferris, M.C., Lim, J.-H., Shepard, D.M.: Radiosurgery treatment planning via nonlinear programming. Ann. Oper. Res. 119, 247–260 (2003)

    Article  MATH  Google Scholar 

  12. Ferris, M.C., Meyer, R.R., D’Souza, W.: Radiation treatment planning: Mixed integer programming formulations and approaches. Optimization Technical Report 02-08, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2002

  13. Fitchard, E.E., Aldridge, J.S., Reckwerdt, P.J., Mackie, T.R.: Registration of synthetic tomographic projection data sets using cross-correlation. Phys. Med. Biol. 43, 1645–1657 (1998)

    Article  Google Scholar 

  14. Hamacher, H.W., Küfer, K.-H.: Inverse radiation therapy planning – a multiple objective optimization approach. Disc. Appl. Math. 118, 145–161 (2002)

    Article  MATH  Google Scholar 

  15. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Preprint 01-8, Institut für Mathematik, Humboldt-Universität, Berlin, 2001

  16. Holmes, T., Mackie, T.R.: A filtered backprojection dose calculation method for inverse treatment planning. Med. Phys. 21 (2), 303–313 (1994)

    Article  Google Scholar 

  17. International Commission on Radiation Units and Measurements Inc. Prescribing, recording, and reporting photon beam therapy. ICRU Report 50, 1993

  18. International Commission on Radiation Units and Measurements Inc. ICRU report 62: Prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). ICRU News, 1999. Available as HTML document from http://www.icru.org/n9924.htm

  19. International Commission on Radiation Units and Measurements Inc. Prescribing, recording, and reporting photon beam therapy (supplement to ICRU report 50). ICRU Report 62, 1999

  20. Jaffray, D.A., Siewerdsen, J.H., Wong, J.W., Martinez, A.A.: Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 53, 1337–1349 (2002)

    Article  Google Scholar 

  21. Kapatoes, J.M., Olivera, G.H., Balog, J.P., Keller, H., Reckwerdt, P.J., Mackie, T.R.: On the accuracy and effectiveness of dose reconstruction for tomotherapy. Phys. Med. Biol. 46, 943–966 (2001)

    Article  Google Scholar 

  22. Kapatoes, J.M., Olivera, G.H., Reckwerdt, P.J., Fitchard, E.E., Schloesser, E.A., Mackie, T.R.: Delivery verification in sequential and helical tomotherapy. Phys. Med. Biol. 44, 1815–1841 (1999)

    Article  Google Scholar 

  23. Kapatoes, J.M., Olivera, G.H., Ruchala, K.J., Mackie, T.R.: On the verification of the incident energy fluence in tomotherapy IMRT. Phys. Med. Biol. 46, 2953–2965 (2001)

    Article  Google Scholar 

  24. Kapatoes, J.M., Olivera, G.H., Ruchala, K.J., Reckwerdt, P.J., Smilowitz, J.B., Balog, J.P., Keller, H., Mackie, T.R.: A feasible method for clinical delivery verification and dose reconstruction in tomotherapy. Med. Phys. 28, 528–542 (2001)

    Article  Google Scholar 

  25. Kapatoes, J.M., Olivera, G.H., Ruchala, K.J., Reckwerdt, P.J., Smilowitz, J.B., Balog, J.P., Pearson, D.W., and Mackie, T.R.: Database energy fluence verification and the importance of on-board CT imaging in dose reconstruction. In: Proceedings of the 13th International Conference on the Use of Computers in Radiation Therapy, W. Schlegel, T. Bortfeld, (eds.), Springer Verlag, Heidelberg, Germany, 2000, pp. 294–296

  26. Keall, P.J., Kini, V.R., Vedam, S.S., Mohan, R.: Motion adaptive x-ray therapy: a feasibility study. Phys. Med. Biol. 46 (1), 1–10 (2001)

    Article  Google Scholar 

  27. Kubo, H.D., Hill, B.C.: Respiration gated radiotherapy treatment: a technical study. Phys. Med. Biol. 41 (1), 83–91 (1996)

    Article  Google Scholar 

  28. Küfer, K.-H., Hamacher, H.W., Bortfeld, T.: A multicriteria optimization approach for inverse radiotherapy planning. Symposium on Operations Research (OR 2000). Available as PDF document from http://www.uni-duisburg.de/FB5/BWL/WI/or2000/sektion01/kuefer.pdf

  29. Langer, M., Brown, R., Urie, M., Leong, J., Stracher, M., Shapiro, J.: Large scale optimization of beam weights under dose-volume restrictions. Int. J. Radiat. Oncol. Biol. Phys. 18, 887–893 (1990)

    Google Scholar 

  30. Langer, M., Morrill, S., Brown, R., Lee, O., Lane, R.: A comparison of mixed integer programming and fast simulated annealing for optimized beam weights in radiation therapy. Med. Phys. 23, 957–964 (1996)

    Article  Google Scholar 

  31. Lee, E.K., Fox, T., Crocker, I.: Optimization of radiosurgery treatment planning via mixed integer programming. Med. Phys. 27, 995–1004 (2000)

    Article  Google Scholar 

  32. Lee, E.K., Fox, T., Crocker, I.: Integer programming applied to intensity-modulated radiation therapy treatment planning. Ann. Oper. Res. (Optimization in Medicine) 119, 165–181 (2003)

    Article  MATH  Google Scholar 

  33. Lee, E.K., Gallagher, R.J., Silvern, D., Wuu, C.S., Zaider, M.: Treatment planning for brachytherapy: an integer programming model, two computational approaches and experiments with permanent prostate implant planning. Phys. Med. Biol. 44, 145–165 (1999)

    Article  MATH  Google Scholar 

  34. Lee, E.K., Zaider, M.: Mixed integer programming approaches to treatment planning for brachytherapy – application to permanent prostate implants. Ann. Oper. Res. (Optimization in Medicine) 119, 147–163 (2003)

    Article  MATH  Google Scholar 

  35. Li, J.G., Xing, L.: Inverse planning incorporating organ motion. Med. Phys. 27 (7), 1573–1578 (2000)

    Article  Google Scholar 

  36. Lim, J.-H., Ferris, M.C., Wright, S.J., Shepard, D.M., Earl, M.A.: An optimization framework for conformal radiation treatment planning. Optimization Technical Report 02-10, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2002.

  37. Lind, B.K., Kăllman, P., Sundelin, B., Brahme, A.: Optimal radiation beam profiles considering uncertainties in beam patient alignment. Acta Oncol. 32, 331–342 (1993)

    Google Scholar 

  38. Linderoth, J.T., Shapiro, A., Wright, S.J.: The empirical behavior of sampling methods for stochastic programming. Optimization Technical Report 02-01, Computer Science Department, University of Wisconsin, Madison, Wisconsin, 2002

  39. Löf, J., Lind, B.K., Brahme, A.: Optimal radiation beam profiles considering the stochastic process of patient positioning in fractionated radiation therapy. Inverse Probl. 11, 1189–1209 (1995)

    Article  Google Scholar 

  40. Löf, J., Lind, B.K., Brahme, A.: An adaptive control algorithm for optimization of intensity modulated radiotherapy considering uncertainties in beam profiles, patient set-up and internal organ motion. Phys. Med. Biol. 43, 1605–1628 (1998)

    Article  Google Scholar 

  41. Mackie, T.R., Holmes, T., Swerdloff, S., Reckwerdt, P., Deasy, J.O., Yang, J., Paliwal, B., Kinsella, T.: Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med. Phys. 20 (6), 1709–1719 (1993)

    Article  Google Scholar 

  42. Mackie, T.R., Kapatoes, J., Ruchala, K., Lu, W., Wu, C., Olivera, G., Forrest, L., Tome, W., Welsh, J., Jeraj, R., Harari, P., Reckwerdt, P., Paliwal, B., Ritter, M., Keller, H., Fowler, J., Mehta, M.: Image guidance for precise conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 56, 89–105 (2003)

    Article  Google Scholar 

  43. McNutt, T.R., Mackie, T.R., Paliwal, B.R.: Analysis and convergence of the iterative convolution/superposition dose reconstruction technique for multiple treatment beams and tomotherapy. Med. Phys. 24, 1465–1476 (1997)

    Article  Google Scholar 

  44. Meyer, R.R., D’Souza, W.D., Ferris, M.C., Thomadsen, B.R.: MIP models and BB strategies in brachytherapy treatment optimization. J. Global Optim. 25, 23–42 (2003)

    Article  Google Scholar 

  45. Morrill, S.M., Lam, K.S., Lane, R.G., Langer, M., Rosen, I.I.: Very fast simulated annealing in radiation therapy treatment plan optimization. Int. J. Radiat. Oncol. Biol. Phys. 31, 179–188 (1995)

    Article  Google Scholar 

  46. Niemierko, A.: Optimization of 3D radiation therapy with both physical and biological end points and constraints. Int. J. Radiat. Oncol. Biol. Phys. 23, 99–108 (1992)

    Google Scholar 

  47. Olivera, G.H., Fitchard, E.E., Reckwerdt, P.J., Ruchala, K.J., Mackie, T.R.: Delivery modification as an alternative to patient repositioning in tomotherapy. In: Proceedings of the 13th International Conference on the Use of Computers in Radiation Therapy, W. Schlegel, T. Bortfeld, (eds.), Springer Verlag, Heidelberg, Germany, 2000, pp. 297–299

  48. Olivera, G.H., Ruchala, K., Lu, W., Kapatoes, J., Reckwerdt, P., Jeraj, R., Mackie, T.R.: Evaluation of patient setup and plan optimization strategies based on deformable dose registration. Int. J. Radiat. Oncol. Biol. Phys. 57 (2), S188–189 (2003)

    Google Scholar 

  49. Preciado-Walters, F., Rardin, R., Langer, M., Thai, V.: A coupled column generation, mixed-integer approach to optimal planning of intensity modulated radiation therapy for cancer. Tech. rep., Industrial Engineering, Purdue University, 2002

  50. Ruchala, K.J., Olivera, G.H., Kapatoes, J.M.: Limited-data image registration for radiotherapy positioning and verification. Int. J. Radiat. Oncol. Biol. Phys. 54, 592–605 (2002)

    Article  Google Scholar 

  51. Ruchala, K.J., Olivera, G.H., Mackie, T.R.: A comparison of maximum-likelihood and iterative filtered backprojection reconstruction algorithms for megavoltage CT on a tomotherapy system. Phy. Med. Biol. 1999

  52. Ruchala, K.J., Olivera, G.H., Schloesser, E.A., Mackie, T.R.: Megavoltage CT on a tomotherapy system. Phys. Med. Biol. 44, 2597–2621 (1999)

    Article  Google Scholar 

  53. Ruchala, K.J., Olivera, G.H., Schloesser, E.A., Reckwerdt, P.J., Mackie, T.R.: Megavoltage CT image reconstruction during tomotherapy treatments. Phys. Med. Biol. 45, 3545–3562 (2000)

    Article  Google Scholar 

  54. Sauer, O.A., Shepard, D.M., Mackie, T.R.: Application of constrained optimization to radiotherapy planning. Med. Phys. 26, 2359–2366 (1999)

    Article  Google Scholar 

  55. Schlegel, W., Mahr, A. (eds.): 3D Conformal Radiation Therapy - A Multimedia Introduction to Methods and Techniques. Springer-Verlag, Berlin, 2001

  56. Shepard, D.M., Chin, L.S., DiBiase, S.J., Naqvi, S.A., Lim, J., Ferris, M.C.: Clinical implementation of an automated planning system for Gamma Knife radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 56, 1488–1494 (2003)

    Article  Google Scholar 

  57. Shepard, D.M., Ferris, M.C., Olivera, G., Mackie, T.R.: Optimizing the delivery of radiation to cancer patients. SIAM Rev. 41, 721–744 (1999)

    MATH  Google Scholar 

  58. Shepard, D.M., Olivera, G., Reckwerdt, P.J., Mackie, T.R.: Iterative approaches to dose optimization in tomotherapy. Phys. Med. Biol. 45 (1), 69–90 (2000)

    Article  Google Scholar 

  59. Verhey, L.J.: Immobilizing and positioning patients for radiotherapy. Semin. Radiat. Oncol. 5 (2), 100–113 (1995)

    Google Scholar 

  60. Voelker, M.M.: Optimization of Slice Models. PhD thesis, University of Wisconsin, Madison, Wisconsin, Dec. 2002

  61. Webb, S.: Optimisation of conformal radiotherapy dose distributions by simulated annealing. Phys. Med. Biol. 34 (10), 1349–1370 (1989)

    Article  Google Scholar 

  62. Webb, S.: Inverse planning for IMRT: the role of simulated annealing. In: The Theory and Practice of Intensity Modulated Radiation Therapy, E. Sternick, (ed.), Advanced Medical Publishing, 1997

  63. Webb, S. The Physics of Conformal Radiotherapy: Advances in Technology. Institute of Physics Publishing Ltd., 1997

  64. Wong, J.R., Grimm, S.L., Oren, R., Uematsu, M.: Image-guided radiation therapy of primary prostate cancer by a CT-linac combination: prostate movements and dosimetric considerations. Int. J. Radiat. Oncol. Biol. Phys. 57 (2), S334–335 (2003)

    Google Scholar 

  65. Wong, J.W., Sharpe, M.B., Jaffray, D.A., Kini, V.R., Roberson, J.M., Stromberg, J.S., Martinez, A.A.: The use of active breathing control (ABC) to reduce margin for breathing motion. Int. J. Radiat. Oncol. Biol. Phys. 44 (4), 911–999 (1999)

    Article  Google Scholar 

  66. Wu, C., Jeraj, R., Olivera, G.H., Mackie, T.R.: Re-optimization in adaptive radiotherapy. Phys. Med. Biol. 47, 3181–3195 (2002)

    Article  Google Scholar 

  67. Wu, C., Olivera, G.H., Jeraj, R., Keller, H., Mackie, T.R.: Treatment plan modification using voxel-based weighting factors/dose prescription. Phys. Med. Biol. 48, 2479–2491 (2003)

    Article  Google Scholar 

  68. Xing, L., Cotrutz, C., Hunjan, S., Boyer, A.L., Adalsteinsson, E., Spielman, D.: Inverse planning for functional image-guided intensity-modulated radiation therapy. Phys. Med. Biol. 47, 3567–3578 (2002)

    Article  Google Scholar 

  69. Yan, D., Vicini, F., Wong, J., Martinez, A.: Adaptive radiation therapy. Phys. Med. Biol. 42, 123–132 (1997)

    Article  Google Scholar 

  70. Zavgorodni, S.F.: Treatment planning algorithm corrections accounting for random setup uncertainties in fractionated stereotactic radiotherapy. Med. Phys. 27 (4), 685–690 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Ferris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferris, M., Voelker, M. Fractionation in radiation treatment planning. Math. Program., Ser. A 101, 387–413 (2004). https://doi.org/10.1007/s10107-004-0530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-004-0530-y

Key words

Navigation