Skip to main content
Log in

A branch-and-cut algorithm for scheduling of projects with variable-intensity activities

  • Published:
Mathematical Programming Submit manuscript

Abstract.

In this paper we study a resource constrained project scheduling problem in which the resource usage of each activity may vary over time proportionally to its varying intensity. We formalize the problem by means of a mixed integer-linear program, prove that feasible solution existence is NP-complete in the strong sense and propose a branch-and-cut algorithm for finding optimal solutions. To this end, we provide a complete description of the polytope of feasible intensity assignments to two variable-intensity activities connected by a precedence constraint along with a fast separation algorithm. A computational evaluation confirms the effectiveness of our method on various benchmark instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Englewood Cliffs, New Jersey, 1993

  2. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer and Manufacturing Processes. 2nd edition, Springer-Verlag, Berlin, Heidelberg, New-York, 2001

  3. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: Notation, classification, models and methods. Eur. Jour. Ops. Res. 112, 3–41 (1999)

    Article  MATH  Google Scholar 

  4. Coelho, J.: Personal communication. 2003

  5. De Boer, R.: Resource-Constrained Multi-Project Management - A Hierarchical Decision Support System. Ph.D. thesis, Twente University Press, The Netherlands, 1998

  6. Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling: A Research Handbook. Kluwer Academic Publ., International series in operations research and management science 49, 2002

  7. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian J. Math. 8, 399–404 (1956)

    MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco, 1979

  9. Gonzalez, T., Sahni, S.: Flowshop and jobshop schedules: Complexity and approximation. Oper. Res. 26/1, 36–52 (1978)

    Google Scholar 

  10. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling theory: a survey. Ann. Discrete Math. 5, 287–326 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hans, E.W.: Resource loading by branch-and-price techniques. Ph.D. thesis, Twente University Press, The Netherlands, 2001

  12. Hans, E.W.: Personal communication. 2003

  13. Herroelen, W.S., De Reyck, B., Demeulemeester, E.L.: Resource-constrained project scheduling: a survey of recent developments. Comput. Ops. Res. 25/4, 279–302 (1998)

    Google Scholar 

  14. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In: H.W. Kuhn, A.W. Tucker (eds.), Linear Inequalities and Related Systems, Princeton University Press, Princeton, 1956, pp. 233–246

  15. ILOG: ILOG CPLEX 7.5, User’s manual. ILOG S.A, Gentilly, France, 2001

  16. Jünger, M., Reinelt, G., Thienel, S.: Practical problem solving with cutting plane algorithms in combinatorial optimization. DIMACS Ser. in Discr. Math. and Theor. Comput. Sci. 20, 111–152 (1995)

    Google Scholar 

  17. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of resource-constrained project scheduling problems. Technical Report, 301, University of Kiel, Germany, 1992

  18. Kolisch, R., Sprecher, A.: PSPLIB – a project scheduling library. Eur. Jour. Ops. Res. 96, 205–216 (1997)

    Article  Google Scholar 

  19. Leachman, R.C., Dincerler, A., Kim, S.: Resource constrained scheduling of projects with variable-intensity activities. IIE Trans. 22/1, 31–40 (1990)

    Google Scholar 

  20. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John Wiley & Sons, New York, 1988

  21. Padberg, M.W., Van Roy, T.J., Wolsey, L.A.: Valid linear inequalities for fixed charge problems. Oper. Res. 33/4, 842–861 (1985)

    Google Scholar 

  22. Padberg, M.W., Rinaldi, G.: Optimization of a 532 city symmetric traveling salesman problem by branch and cut. Oper. Res. Lett. 6, 1–7 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Chicester, 1986

  24. Tavares, L.V.: Advanced models for project management. Kluwer Academic Publishers, 1998, pp. 177–216

  25. Tavares, L.V.: A review of the contribution of operational research to project management. Eur. Jour. Ops. Res. 136, 1–18 (2002)

    Article  MATH  Google Scholar 

  26. Weglarz, J.: Project scheduling with continuously-divisible doubly constrained resources. Management Science 27/9, 1040–1053 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Kis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kis, T. A branch-and-cut algorithm for scheduling of projects with variable-intensity activities. Math. Program. 103, 515–539 (2005). https://doi.org/10.1007/s10107-004-0551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-004-0551-6

Keywords

Navigation