Skip to main content
Log in

Design of planar articulated mechanisms using branch and bound

  • Published:
Mathematical Programming Submit manuscript

Abstract.

This paper considers an optimization model and a solution method for the design of two-dimensional mechanical mechanisms. The mechanism design problem is modeled as a nonconvex mixed integer program which allows the optimal topology and geometry of the mechanism to be determined simultaneously. The underlying mechanical analysis model is based on a truss representation allowing for large displacements. For mechanisms undergoing large displacements elastic stability is of major concern. We derive conditions, modeled by nonlinear matrix inequalities, which guarantee that a stable equilibrium is found and that buckling is prevented. The feasible set of the design problem is described by nonlinear differentiable and non-differentiable constraints as well as nonlinear matrix inequalities.

To solve the mechanism design problem a branch and bound method based on convex relaxations is developed. To guarantee convergence of the method, two different types of convex relaxations are derived. The relaxations are strengthened by adding valid inequalities to the feasible set and by solving bound contraction sub-problems. Encouraging computational results indicate that the branch and bound method can reliably solve mechanism design problems of realistic size to global optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achtziger, W., Bendsøe, M.P., Ben-Tal, A., Zowe, J.: Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput. Sci. Eng. 4 (4), 315–345 (1992)

    Article  MathSciNet  Google Scholar 

  2. Al-Khayyal, F.A.: Jointly constrained bilinear programs and related problems: An overview. Comput. Math. Appl. 19 (11), 53–62 (1990)

    Article  MathSciNet  Google Scholar 

  3. Al-Khayyal, F.A.: Generalized bilinear programming: Part I. Models, applications and linear programming relaxation. European J. Oper. Res. 60, 306–314 (1992)

    MATH  Google Scholar 

  4. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8 (2), 273–286 (1983)

    Article  MathSciNet  Google Scholar 

  5. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71, 221–245 (1995)

    MathSciNet  Google Scholar 

  6. Bathe, K.-J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1982

  7. Ben-Tal, A., Bendsøe, M.P.: A new method for optimal truss topology design. SIAM J. Optim. 3 (2), 322–358 (1993)

    Article  MathSciNet  Google Scholar 

  8. Ben-Tal, A., Jarre, F., Kočvara, M., Nemirovski, A., Zowe, J.: Optimal design of trusses under a nonconvex global buckling constraint. Optim. Eng. 1, 189–213 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ben-Tal, A., Kočvara, M., Zowe, J.: Two non-smooth methods for simultaneous geometry and topology design of trusses. In: M.P. Bendsøe, C.A. Mota Soares (eds.), Topology Design of Structures, Kluwer Academic Publishers, 1993, pp. 31–42

  10. Ben-Tal, A., Nemirovski, A.: Potential reduction polynomial time method for truss topology design. SIAM J. Optim. 4 (3), 596–612 (1994)

    Article  MathSciNet  Google Scholar 

  11. Ben-Tal, A., Nemirovski, A.: Optimal design of engineering structures. OPTIMA Mathematical Programming Society Newsletter, 1995, No. 47

  12. Ben-Tal, A., Nemirovski., A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7 (4), 991–1016 (1997)

    Article  MathSciNet  Google Scholar 

  13. Ben-Tal, A., Nemirovski, A..: Handbook of semidefinite programming. Chapter Structural Design, Kluwer Academic Publishers, 2000, pp. 443–467

  14. Bendsøe, M.P..: Optimization of structural topology, shape, and material. Springer-Verlag, 1995

  15. Bendsøe, M.P., Ben-Tal, A., Zowe., J.: Optimization methods for truss geometry and topology design. Struct. Optim. 7 (3), 141–158 (1994)

    Google Scholar 

  16. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, 2003

  17. Bollapragada, S., Ghattas, O., Hooker., J.N.: Optimal design of truss structures by logical-based branch and cut. Oper. Res. 49 (1), 42–51 (2001)

    Article  MathSciNet  Google Scholar 

  18. Calladine., C.R.: Buckminster Fuller’s tensegrity structures and Clerk Maxwell’s rules for the construction of stiff frame. Int. J. Solids Struct. 14, 161–172 (1978)

    Article  Google Scholar 

  19. Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures. Vol. 1: Essentials. John Wiley & Sons, New York, 1997

  20. Dorn, W.S., Gomory, R.E., Greenberg, H.J..: Automatic design of optimal structures. Journal de Mécanique 3 25–52, 1964.

    Google Scholar 

  21. Erdman., A.G.: Computer-aided mechanism design - now and the future. J. Mech. Design 117, 93–100 (1995)

    Google Scholar 

  22. Erdman, A.G., Sandor, G.N.: Mechanism Design: Analysis and Synthesis. Volume I. Prentice Hall, 2nd edition, 1990

  23. Eschenauer, H.A., Olhoff, N.: Topology optimization of continuum structures: A review. Applied Mechanics Reviews 54 (4), 331–390 (2001)

    Article  Google Scholar 

  24. Foulds, L.R., Haugland, D., Jörnsten., K.: A bilinear approach to the pooling problem. Optimization 24, 165–180 (1992)

    MATH  MathSciNet  Google Scholar 

  25. Fowler, P.W., Guest., S.D.: A symmetry extension of Maxwell’s rule for rigidity of frames. Int. J. Solids Struct. 37, 1793–1804 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for SNOPT 5.3: a Fortran package for large-scale nonlinear programming. Technical report, NA 97-5 , Department of Mathematics, University of California, 1997

  27. Gill, P.E., Murray, W., Saunders., M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12 (4), 979–1006 (2002)

    Article  MathSciNet  Google Scholar 

  28. Gill, P.E., Murray, W., Wright, M.: Practical Optimization. Academic Press, 1981

  29. Hansen., J.M.: Synthesis of mechanisms using time-varying dimensions. Struct. Multidisc. Optim. 7 (1), 127–144 (2002)

    Google Scholar 

  30. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer-Verlag, 1993

  31. Jarre, F., Kočvara, M., Zowe., J.: Optimal truss design by interior point methods. SIAM J. Optim. 8 (4), 1084–1107 (1998)

    Article  MathSciNet  Google Scholar 

  32. Kawamoto, A., Bendsøe, M.P., Sigmund., O.: Articulated mechanism design with a degree of freedom constraint. Int. J. Numer. Meth. Eng. 61 (9), 1520–1545 (2004)

    Article  MathSciNet  Google Scholar 

  33. Kawamoto, A., Bendsøe, M.P., Sigmund., O.: Planar articulated mechanism design by graph theoretical enumeration. Struct. Multidisc. Optim. 27 (4), 295–299 (2004)

    Article  MathSciNet  Google Scholar 

  34. Kočvara., M.: On the modelling and solving of the truss design problem with global stability constraints. Struct. Multidisc. Optim. 23, 189–203 (2002)

    Article  Google Scholar 

  35. McCormick., G.P.: Computability of global solutions to factorable nonconvex programs: part I - convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  Google Scholar 

  36. Mészáros, Cs., Suhl., U.H.: Advanced preprocessing techniques for linear and quadratic programming. OR Spectrum 25, 575–595 (2003)

    Article  MATH  Google Scholar 

  37. Minnaar, R.J., Tortorelli, D.A., Snyman, J.A.: On nonassembly in the optimal dimensional synthesis of planar mechanisms. Struct. Multidisc. Optim. 21 (5), 345–354 (2001)

    Article  Google Scholar 

  38. Nishino, F., Duggal., R.: Shape optimum design of trusses under multiple loading. Int. J. Solids Struct. 26, 17–27 (1990)

    Article  Google Scholar 

  39. Padberg, M., Rinaldi, G..: A branch-and-cut algorithm for the resolution of large-scale traveling salesman problems. SIAM Review 33, 1991

  40. Pellegrino, S., Calladine., C.R.: Matrix analysis of statically and kinematically indeterminate frameworks. International J. Solids Struct. 22, 409–428 (1986)

    Article  Google Scholar 

  41. Rozvany, G.I.N., Bendsøe, M.P., Kirsch., U.: Layout optimization of structures. Applied Mechanics Reviews 48, 41–119 (1995)

    Article  Google Scholar 

  42. Ryoo, H.S., Sahinidis., N.V.: A branch-and-reduce approach to global optimization. J. Global Optim. 8, 107–138 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Savelsbergh., M.W.P.: Preprocessing and probing for mixed integer programming problems. ORSA J. Comput. 6, 445–454 (1994)

    MathSciNet  Google Scholar 

  44. Stolpe., M.: Global optimization of minimum weight truss topology problems with stress, displacement, and local buckling constraints using branch-and-bound. Int. J. Numer. Meth. Eng. 61 (8), 1270–1309 (2004)

    Google Scholar 

  45. Stolpe, M., Svanberg., K.: Modeling topology optimization problems as linear mixed 0-1 programs. International J. Numer. Meth. Eng. 57 (5), 723–739 (2003)

    Article  MathSciNet  Google Scholar 

  46. Sturm, J.F..: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11–12, 625–653 (1999), Version 1.05 available from, http://fewcal.kub.nl/sturm

  47. Tischler, C.R., Samuel, A.E., Hunt., K.H.: Kinematic chains for robot hands–I. Orderly number-synthesis. Mechanism and Machine Theory 30, 1193–1215 (1995)

    Article  Google Scholar 

  48. Tischler, C.R., Samuel, A.E., Hunt., K.H.: Kinematic chains for robot hands–II. Kinematic constraints, classification, connectivity, and actuation. Mechanism and Machine Theory 30, 1217–1239 (1995)

    Google Scholar 

  49. Vandenberghe, L., Boyd., S.: Semidefinite programming. SIAM Review 38, 45–95 (1996)

    Article  MathSciNet  Google Scholar 

  50. Zamora, J.M., Grossmann., I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Global Optim. 14, 217–249 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Stolpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolpe, M., Kawamoto, A. Design of planar articulated mechanisms using branch and bound. Math. Program. 103, 357–397 (2005). https://doi.org/10.1007/s10107-005-0586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0586-3

Keywords

Mathematics Subject Classification (2000):

Navigation