Skip to main content
Log in

A global optimization method for the molecular replacement problem in X-ray crystallography

  • Published:
Mathematical Programming Submit manuscript

Abstract.

The primary technique for determining the three-dimensional structure of a protein molecule is X-ray crystallography, from which the molecular replacement (MR) problem often arises as a critical step. The MR problem is a global optimization problem to locate an optimal position of a model protein so that at this position the model will produce calculated intensities closest to those observed from an X-ray crystallography experiment involving a protein with unknown but similar atomic structure. Improving the applicability and robustness of MR methods is an important research topic because commonly used traditional MR methods, though often successful, have their limitations in solving difficult problems.

We introduce a new global optimization strategy that combines a coarse-grid search, using a surrogate function, with extensive multi-start local optimization. A new MR code, called SOMoRe, based on this strategy is developed and tested on four realistic problems, including two difficult problems that traditional MR codes failed to solve directly. SOMoRe was able to solve each test problem without any complication, and SOMoRe solved an MR problem using a less complete model than the models required by three other programs. These results indicate that the new method is promising and should enhance the applicability and robustness of the MR methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae, E., Phillips, G.N. Jr.: Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J. Biol. Chem. 279, 28202–28208 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Baker, E.N., Anderson, B.F., Dobbs, A.J.: Use of iron anomalous scattering with multiple models and data sets to identify and refine a weak molecular replacement solution: structure analysis of cytochrome c’ from two bacterial species. Acta Cryst. D51, 282–289 (1995)

    Google Scholar 

  3. Blundell, T., Johnson, L.: Protein Crystallography. Academic Press, 1976

  4. Brunger, A.T.: X-PLOR. A System for X-ray Crystallography and NMR. Yale University Press, New Haven, CT, 1992

  5. Brunger, A.T.: Patterson correlation searches and refinement. Methods Enzymol. 276, 558–580 (1997)

    CAS  Google Scholar 

  6. Brunger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T., Warren, G.L.: Crystallography and nmr system (cns): a new software system for macromolecular structure determination. Acta Cryst. D54, 905–921 (1998)

    Google Scholar 

  7. Chang, G., Lewis, M.: Molecular replacement using genetic algorithms. Acta Cryst. D53, 279–289 (1997)

    Google Scholar 

  8. Number 4 Collaborative Computational Project. The ccp4 suite: programs for protein crystallography. Acta Cryst. D50, 760–763 (1994)

    Google Scholar 

  9. Creighton, T.: Proteins, Structures and Molecular Properties. John Wiley & Sons, Inc., 2nd edition, 1959

  10. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Society for Industrial and Applied Mathematics, 1996

  11. Dobbs, A.J., Anderson, B.F., Faber, H.R., Baker, E.N.: Three-dimensional structure of cytochrome c’ from two alcaligenes species and the implications for four-helix bundle structures. Acta Cryst. D52, 356–368 (1996)

    Google Scholar 

  12. Drenth, J.: Principles of Protein X-ray Crystallography. Springer-Verlag, 2nd edition, 1999

  13. Evans, G., Roversi, P., Bricogne, G.: In-house low-resolution x-ray crystallography. Acta Cryst. D56, 1304–1311 (2000)

    Google Scholar 

  14. Fujinaga, M., Read, R.J.: Experiences with a new translation-function program. J. Appl. Cryst. 20, 517–521 (1987)

    Article  Google Scholar 

  15. Glusker, J., Trueblood, K.: Crystal Structure Analysis, A Primer. Oxford University Press, 2nd edition, 1985

  16. Glykos, N.M., Kokkinidis, M.: A stochastic approach to molecular replacement. Acta Cryst. D56, 169–174 (2000)

    Google Scholar 

  17. Glykos, N.M., Kokkinidis, M.: Meaningful refinement of polyalanine models using rigid-body simulated annealing: application to the structure determination of the a31p rop mutant. Acta Cryst., D55, 1301–1308 (1999)

    Google Scholar 

  18. Glykos, N.M., Kokkinidis, M.: Multidimensional molecular replacement. Acta Cryst. D57, 1462–1473 (2001)

    Google Scholar 

  19. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, 3rd edition, 1996

  20. Hauptman, H.: On integrating the techniques of direct methods and isomorphous replacement. i the theoretical basis. Acta Cryst. A38, 289–294 (1982)

    Google Scholar 

  21. Hauptman, H.: A minimal principle in the phase problem of x-ray crystallography. In: Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, P.M. Pardalos, D. Shalloway, G. Xue, (eds.), American Mathematical Society, 1996, pp. 407–460

  22. Hauptman, H.: Recent advances in the direct method of x-ray crystallography. In: Handbook of Global Optimization, P.M. Pardalos, H.E. Romeijn, (eds.), 2, Kluwer Academic Publishers, 2002, pp. 407–460

  23. Hirshfeld, F.L.: Symmetry in the generation of trial structures. Acta Cryst. A24, 301–311 (1968)

    Google Scholar 

  24. Jamrog, D.C.: A New Global Optimization Strategy for the Molecular Replacement Problem. PhD thesis, Rice University, 6100 Main Street, Houston, Texas, April, 2002

  25. Jamrog, D.C., Zhang, Y., Phillips, G.N. Jr.: On the equivalence between a commonly used correlation coefficient and a least-squares function. Acta Cryst. A60, 214–219 (2004)

    Google Scholar 

  26. Stout, G., Jensen, L.: X-ray Structure Determination, A Practical Guide. John Wiley & Sons, Inc., 2nd edition, 1989

  27. Jogl, G., Tao, X., Xu, Y., Tong, L.: Como: a program for combined molecular replacement. Acta Cryst. D57, 1127–1134 (2001)

    Google Scholar 

  28. Kissinger, C., Gehlhaar, D., Fogel, D.: Rapid automated molecular replacement by evolutionary search. Acta Cryst. D55, 484–491 (1999)

    Google Scholar 

  29. Kissinger, C., Gehlhaar, D., Smith, B.A., Bouzida, D.: Molecular replacement by evolutionary search. Acta Cryst. D57, 1474–1479 (2001)

    Google Scholar 

  30. Lattman, E.E.: Optimal sampling of the rotation function. Acta Cryst. B28, 1065–1068 (1972)

    Google Scholar 

  31. Lattman, E.E.: Use of rotation and translation functions, Methods Enzymol. 115, 55–77 (1985)

    Google Scholar 

  32. Navaza, J.: Implementation of molecular replacement in Amore. Acta Cryst. A57, 1367–1372 (2001)

    Google Scholar 

  33. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, 1999

  34. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. Rabinovich, D., Rozenberg, H., Shakked, Z.: Molecular replacement: the revival of the molecular fourier transform method. Acta Cryst. D54, 1336–1342 (1998)

    Google Scholar 

  36. Rabinovich, D., Shakked, Z.: A new approach to structure determination of large molecules by multi-dimensional search methods. Acta Cryst. A40, 195–200 (1984)

    Google Scholar 

  37. Rossman, M.G., Blow, D.: The detection of sub-units within the crystallographic asymmetric unit. Acta Cryst. 15, 45–52 (1962)

    Google Scholar 

  38. Rossman, M.G. (ed.): The Molecular Replacement Method, A Collection of Papers on the Use of Non-crystallographic Symmetry. International Science Review Series, Gordon and Breach, Science Publishers, 1972

  39. Sheriff, S., Klei, H., Davis, M.: Implementation of a six-dimensional search using the amore translation function for difficult molecular replacement problems. J. Appl. Cryst. 32, 98–101 (1999)

    Article  CAS  Google Scholar 

  40. Tapia, R.A., Contreras, M.: Sizing the bfgs and dfp updates: numerical study, J. Optimization Theory Appl. 78, 93–108 (1993)

    Article  Google Scholar 

  41. Tong, L.: Combined molecular replacement. Acta Cryst. A52, 782–784 (1996)

    Google Scholar 

  42. Uson, I., Sheldrick, G.M.: Advances in direct methods for protein crystallography, Curr. Opin. Struct. Biol. 9, 643–648 (1999)

    Article  CAS  Google Scholar 

  43. Vagin, A., Teplyakov, A.: Molrep: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997)

    Article  CAS  Google Scholar 

  44. Yoon, J., Gad, Y., Wu, Z.: Mathematical modeling of protein structure using distance geometry. Technical report TR00-24, Rice University, 6100 Main St., Houston, TX, 77005, 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane C. Jamrog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamrog, D., Phillips Jr., G., Tapia, R. et al. A global optimization method for the molecular replacement problem in X-ray crystallography. Math. Program. 103, 399–426 (2005). https://doi.org/10.1007/s10107-005-0587-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0587-2

Keywords

Mathematics Subject Classification (2000)

Navigation