Skip to main content
Log in

Second-order conditions in C1,1 constrained vector optimization

  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider the constrained vector optimization problem min C f(x), g(x) ∈ −K, where f:ℝn→ℝm and g:ℝn→ℝp are C1,1 functions, and Cm and Kp are closed convex cones with nonempty interiors. Two type of solutions are important for our considerations, namely w-minimizers (weakly efficient points) and i-minimizers (isolated minimizers). We formulate and prove in terms of the Dini directional derivative second-order necessary conditions for a point x0 to be a w-minimizer and second-order sufficient conditions for x0 to be an i-minimizer of order two. We discuss the reversal of the sufficient conditions under suitable constraint qualifications of Kuhn-Tucker type. The obtained results improve the ones in Liu, Neittaanmäki, Křížek [21].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghezzaf, B.: Second-order necessary conditions of the Kuhn-Tucker type in multiobjective programming problems. Control Cybernet. 28 (2), 213–224 (1999)

    Google Scholar 

  2. Auslender, A.: Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22, 239–254 (1984)

    Article  Google Scholar 

  3. Aubin, J.-P., Frankowska, H.: Set-valued analysis. Birkhäuser, Boston, 1990

  4. Bolintinéanu, S., El Maghri, M.: Second-order efficiency conditions and sensitivity of efficient points. J. Optim. Theory Appl. 98 (3), 569–592 (1998)

    Article  Google Scholar 

  5. Demyanov, V.F., Rubinov, A.M.: Constructive nonsmooth analysis. Peter Lang, Frankfurt am Main, 1995

  6. Georgiev, P.G., Zlateva, N.: Second-order subdifferentials of C1,1 functions and optimality conditions. Set-Valued Anal. 4 (2), 101–117 (1996)

    Article  Google Scholar 

  7. Ginchev, I.: Higher order optimality conditions in nonsmooth vector optimization. In: A. Cambini, B. K. Dass, L. Martein (eds.), Generalized Convexity, Generalized Monotonicity, Optimality Conditions and Duality in Scalar and Vector Optimization. J. Stat. Manag. Syst. 5 (1–3), 321–339 (2002)

  8. Ginchev, I., Guerraggio, A., Rocca, M.: First-order conditions for C0,1 constrained vector optimization. In: F. Giannessi, A. Maugeri (eds.), Variational analysis and applications. Proc. Erice, June 20– July 1, 2003, Kluwer Acad. Publ., Dordrecht 2004 (to appear)

  9. Ginchev, I., Hoffmann, A.: Approximation of set-valued functions by single-valued one. Discuss. Math. Differ. Incl. Control Optim. 22, 33–66 (2002)

    Google Scholar 

  10. Guerraggio, A., Luc, D.T.: Optimality conditions for C1,1 vector optimization problems. J. Optim. Theory Appl. 109 (3), 615–629 (2001)

    Article  Google Scholar 

  11. Guerraggio, A., Luc, D.T.: Optimality conditions for C1,1 constrained multiobjective problems. J. Optim. Theory Appl. 116 (1), 117–129 (2003)

    Article  Google Scholar 

  12. Hiriart-Urruty, J.-B.: New concepts in nondifferentiable programming. Analyse non convexe, Bull. Soc. Math. France 60, 57–85 (1979)

    Google Scholar 

  13. Hiriart-Urruty, J.-B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)

    Google Scholar 

  14. Hiriart-Urruty, J.-B., Strodiot, J.-J., Hien Nguen, V.: Generalized Hessian matrix and second order optimality conditions for problems with C1,1 data. Appl. Math. Optim. 11, 169–180 (1984)

    Article  Google Scholar 

  15. Jiménez, B.: Strict efficiency in vector optimization. J. Math. Anal. Appl. 265, 264–284 (2002)

    Article  Google Scholar 

  16. Jiménez, B., Novo, V.: First and second order conditions for strict minimality in nonsmooth vector optimization. J. Math. Anal. Appl. 284, 496–510 (2003)

    Article  Google Scholar 

  17. Klatte, D., Tammer, K.: On the second order sufficient conditions to perturbed C1,1 optimization problems. Optimization 19, 169–180 (1988)

    Google Scholar 

  18. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: J. Neyman (ed.), Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, 1951, pp. 481–492

  19. Liu, L.: The second-order conditions of nondominated solutions for C1,1 generalized multiobjective mathematical programming. J. Syst. Sci. Math. Sci. 4 (2), 128–138 (1991)

    Google Scholar 

  20. Liu, L., Křížek, M.: The second-order optimality conditions for nonlinear mathematical programming with C1,1 data. Appl. Math. 42, 311–320 (1997)

    Article  Google Scholar 

  21. Liu, L., Neittaanmäki, P., Křížek, M.: Second-order optimality conditions for nondominated solutions of multiobjective programming with C1,1 data. Appl. Math. 45, 381–397 (2000)

    Article  Google Scholar 

  22. Malivert, C.: First and second order optimality conditions in vector optimization. Ann. Sci. Math. Québec 14, 65–79 (1990)

    Google Scholar 

  23. Mangasarian, O.L.: Nonlinear programming. Society for Industrial and Applied Mathematics, Philadelphia, 1994

  24. Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton, 1970

  25. Rockafellar, R.T., Wets, R.J.-B.: Variational analysis. Springer, Berlin, 1998

  26. Wang, S.: Second-order necessary and sufficient conditions in multiobjective programming. Numer. Funct. Anal. Opim. 12, 237–252 (1991)

    Google Scholar 

  27. Yang, X.Q., Jeyakumar, V.: Generalized second-order directional derivatives and optimization with C1,1 functions. Optimization 26, 165–185 (1992)

    Google Scholar 

  28. Yang, X.Q.: Second-order conditions in C1,1 optimization with applications. Numer. Funct. Anal. Optim. 14, 621–632 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Rocca.

Additional information

This paper is dedicated to R.T. Rockafellar whose works have guided and inspired us

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginchev, I., Guerraggio, A. & Rocca, M. Second-order conditions in C1,1 constrained vector optimization. Math. Program. 104, 389–405 (2005). https://doi.org/10.1007/s10107-005-0621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0621-4

Mathematics Subject Classification (1991)