
The Constrained Minimum Weighted Sum of

Job Completion Times Problem

Asaf Levin1 and Gerhard J. Woeginger2,3

1 Faculty of Industrial Engineering and Management, Technion
Haifa 32000, Israel

levinas@tx.technion.ac.il
2 Department of Mathematics, University of Twente, P.O. Box 217

7500 AE Enschede, The Netherlands
g.j.woeginger@math.utwente.nl

3 Department of Mathematics and Computer Science, TU Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

gwoegi@win.tue.nl

Abstract. We consider the problem of minimizing the weighted sum of
job completion times on a single machine (subject to certain job weights)
with an additional side constraint on the weighted sum of job completion
times (with respect to different job weights). This problem is NP-hard,
and we provide a polynomial time approximation scheme for this prob-
lem. Our method is based on Lagrangian relaxation mixed with carefully
guessing the positions of certain jobs in the schedule.

Keywords: scheduling; bicriteria optimization; approximation scheme.

1 Introduction

Consider a set of n jobs 1, 2, . . . , n where each job j has a positive integer pro-
cessing time pj , and two positive integer weights wj and uj. These jobs have
to be scheduled on a single machine. A schedule essentially corresponds to a
permutation π ∈ Sn of the jobs, where π = (π1, π2, . . . , πn) lists the jobs in the
schedule beginning with the first one and ending with the last one. A schedule π
induces for every job j a completion time Cπ

j ; if the schedule π is clear from the
context, we will suppress the superscript π and simply write Cj . In this paper,
we study the following bicriteria version of the problem of minimizing the sum
of weighted job completion times:

minimize
∑n

j=1 wj Cπ
j

subject to
∑n

j=1 uj Cπ
j ≤ U

π ∈ Sn

(1)

Here the integer U is a budget bound that is specified as part of the input.
This optimization problem is called the constrained minimum weighted sum

of job completion times problem on a single machine (CWSCT). It
arguably belongs to the most simple non-trivial bicriteria scheduling problems.

D. Bienstock and G. Nemhauser (Eds.): IPCO 2004, LNCS 3064, pp. 298–307, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Constrained Minimum Weighted Sum of Job Completion Times Problem 299

Our Results. In Section 2 we give a straightforward reduction from the par-
tition problem that shows that CWSCT is NP-hard. As our main result, we
then construct in Section 3 a polynomial time approximation scheme (PTAS)
for CWSCT: A ρ-approximation algorithm is a polynomial time algorithm that
returns a near-optimal feasible solution with cost at most a factor ρ above the
optimal cost. A polynomial time approximation scheme (PTAS) is a family of
(1 + ε)-approximation algorithms over all ε > 0. Our method is based on La-
grangian relaxation, on adjacency relations between various optimal permuta-
tions, and on a number of guessing steps that guess the positions of certain jobs
in an optimal schedule.

Known Results. The literature contains a number of results on bicriteria schedul-
ing problems: McCormick & Pinedo [6] consider the problem of scheduling n
jobs on m uniform machines with job preemptions. They present a polynomial
time algorithm that generates the entire trade-off curve of schedules which are
Pareto-optimal for the makespan and the flowtime objectives. Shmoys & Tardos
[9] consider a scheduling problem with n jobs and m unrelated machines. As-
signing job j to machine i causes a processing time pij on this machine and also
a global cost cij . For a given (hard) budget constraint C on the total cost and
for a given bound T on the makespan, the algorithm in [9] either proves that
there is no schedule of cost at most C and makespan at most T , or otherwise it
provides a schedule with cost at most C and makespan at most 2T . Hence, this
yields a kind of 2-approximation algorithm for this budget problem. The results
in [9] improve on earlier results by Lin & Vitter [5] on the same problem. Stein
& Wein [11] consider a fairly general family of bicriteria scheduling problems.
They show that all problems in their family possess schedules that simultane-
ously approximate the optimal makespan within a factor of 1.88 and the optimal
sum of weighted job completion times within a factor of 1.88. Aslam, Rasala,
Stein & Young [1] and Rasala, Stein, Torng & Uthaisombut [7] provide a variety
of other results in this direction.

There is a rich literature on bicriteria problems in graph theory; see Ravi [8]
for a (restricted) survey. Here we only want to mention a result by Goemans &
Ravi [3] that yields a PTAS for the constrained minimum spanning tree problem.
The approach in [3] is based on a Lagrangian relaxation approach, and it heavily
exploits the adjacency structure of the underlying matroid polytope. When we
started to work on CWSCT, we were hoping to be able to apply the machinery
of [3] more or less directly. However, the lack of matroid properties in CWSCT
seems to make this impossible; we worked around this by introducing a number
of guessing steps that provide us with the necessary combinatorial structures.

2 NP-hardness

In this section we prove NP-hardness of CWSCT via a reduction from the NP-
hard Partition problem (see Garey & Johnson [2]). An instance of Partition

consists of n positive integers a1, a2, . . . , an such that
∑n

i=1 ai = 2A where A is

300 A. Levin and G.J. Woeginger

an integer. The problem is to decide whether there exists an index set S such
that

∑
i∈S ai =

∑
i/∈S ai = A.

From an instance of Partition we define an instance of CWSCT as follows:
Let M = 4A2 + 1. There are n + 1 jobs 1, 2, . . . , n, n + 1. The jobs j with
1 ≤ j ≤ n have pj = wj = aj and uj = 0, whereas the last job has pn+1 = M ,
un+1 = 1, and wn+1 = 0. Finally, the budget U equals M + A. We claim that
the Partition instance has answer YES, if and only if the CWSCT instance
has a schedule with objective value at most 4A2 + MA.

First assume that the Partition instance has answer YES, and that there
is an index set S with

∑
i∈S ai = A. We construct a schedule π that first runs

the jobs in S (in arbitrary order), then runs job n + 1, and finally runs the
remaining jobs (in arbitrary order). In schedule π job n + 1 completes exactly
at time M +

∑
i∈S ai = M + A = U . Since all other jobs have zero u-weight,

the schedule π indeed satisfies the budget constraint, and hence is feasible. The
total w-weight of the jobs that are processed after job n + 1 exactly equals A.
Therefore, the objective value of π is

n+1∑

j=1

wjCj ≤
n+1∑

j=1

∑

i:πi≥πj

pjwi ≤ (
n∑

i=1

pj)(
n∑

j=1

wi) + pn+1

∑

i/∈S

wi

= 4A2 + MA.

Next, assume that the constructed CWSCT instance has a schedule with
objective value at most 4A2 +MA. We denote by S the set of jobs in π that are
processed before job n + 1 starts. We will show that

∑
i∈S ai = A, and hence

the Partition instance has answer YES. Since Cn+1 =
∑

j ujCj ≤ U = M + A
and since Cn+1 = pn+1 +

∑
i∈S pi = M +

∑
i∈S pi, we conclude

∑
i∈S pi ≤ A.

Therefore,
∑

i∈S

ai ≤ A. (2)

Suppose for the sake of contradiction that
∑

i/∈S ai > A. Then the integrality of
the numbers ai yields

∑
i/∈S wi =

∑
i/∈S ai ≥ A + 1. The jobs in {1, 2, . . . , n} \ S

are all processed after job n + 1, and hence have completion times of at least
pn+1 = M . Then, the total cost of the solution is at least M

∑
i/∈S wi ≥ M(A +

1) > MA+4A2, where the last inequality follows because M > 4A2. But now the
objective value of π would be greater than 4A2 +MA, the desired contradiction.
Therefore,

∑
i/∈S ai ≤ A holds, which together with (2) yields

∑
i∈S ai = A.

Hence, the Partition instance has answer YES.
Summarizing, this yields the following theorem.

Theorem 1. Problem CWSCT is NP-hard in the ordinary sense.

3 The Polynomial Time Approximation Scheme

Let ε > 0 be the desired precision of approximation (a fixed constant that is not
part of the input); to simplify the presentation we will assume that 1/ε is integer.

The Constrained Minimum Weighted Sum of Job Completion Times Problem 301

Consider an instance I of CWSCT. Let W =
∑n

j=1 wj denote the total w-weight
of the jobs, and let P =

∑n
j=1 pj denote their total processing time. We assume

without loss of generality that instance I has at least one feasible schedule in (1);
this can be checked in polynomial time through Smith’s algorithm [10]. Finally,
we fix an optimal schedule π∗ for instance I relative to which we will do our
analysis.

The approximation scheme goes through a number of guessing steps that
guess certain pieces of information about the structure of the optimal schedule.
All our guesses can be emulated in polynomial time either by means of a binary
search or by means of total enumeration.

In our first guessing step, we guess the optimal objective value OPT. Since
OPT lies somewhere between 0 and WP , we can approximate it with arbitrary
precision through a binary search: If our current guess is too small, the whole
procedure will fail, and we know that we have to use a larger guess. If our
current guess is too large, the procedure yields an approximate schedule and
we may move on to a smaller guess. Hence, the guesses eventually converge to
OPT, and we terminate the binary search as soon as the induced lower and upper
bounds on OPT are only a factor 1 + ε away from each other.

Based on OPT, we define the threshold parameter τ :

τ = ε OPT. (3)

A pair of jobs (i, j) is a critical pair if wipj − wjpi ≥ τ holds. A critical pair
(i, j) is called an active critical pair in π if πj < πi. A critical pair (i, j) is called
an in-active critical pair in π if πj > πi.

Lemma 1. In any optimal schedule, there are at most 1/ε active critical pairs.

Proof. Consider an optimal schedule, and assume that some job i participates
in exactly k active critical pairs (i, j1), (i, j2), . . . , (i, jk). Then the contribution
of job i to the objective value is at least

wiCi ≥ wi

k∑

l=1

pjl
≥

k∑

l=1

(wipjl
− wjl

pi) ≥ k ε OPT.

Therefore, there are at most 1/ε active critical pairs. ��

As an immediate consequence of Lemma 1, any optimal schedule has at most
2/ε jobs that participate in some active critical pair. In our second guessing
step, we guess these at most 2/ε jobs together with their relative ordering in the
optimal schedule π∗. This guessing step amounts to enumerate O(n2/ε) subsets
and (2/ε)! total orderings for each of these subsets, that is, to check a polynomial
number of possibilities. The guessed ordering of the guessed jobs yields a chain-
like precedence constraint structure Chain on the job set.

302 A. Levin and G.J. Woeginger

Now we introduce our first version of the Lagrangian relaxation of (1). For
a real parameter λ ≥ 0, we define Lagrangian job weights �λ

j = wj + λuj where
1 ≤ j ≤ n. Consider the following optimization problem P (λ):

P (λ) = min
∑n

j=1 �λ
j Cπ

j − λU =
∑n

j=1 wj Cπ
j + λ (

∑n
j=1 uj Cπ

j − U)

s.t. π satisfies Chain
(4)

For every λ ≥ 0 the value P (λ) is a lower bound on OPT, since the optimal
permutation π∗ for (1) by definition satisfies the precedence constraints Chain
and also the budget constraint

∑
j ujCj ≤ U .

Moreover, for every λ ≥ 0, problem P (λ) can be solved in polynomial time:
It is the scheduling problem of minimizing total weighted job completion time
on a single machine under a single chain precedence constraint. In Section 4 we
explain how Horn’s algorithm [4] solves this problem by grouping the jobs in
the chain Chain into a number of bundles. Note that some of these bundles may
consist of only one job. For every λ with weights �λ

j , we denote the resulting set
of bundles by Bλ = {J1, J2, . . .}. For every bundle J , we denote by pJ the total
processing time of all the jobs in J and by wJ their total w-weight. We define
the set Dλ of dangerous jobs as:

Dλ = {i /∈ Bλ : ∃J ∈ Bλ with |pJwi − piwJ | ≥ τ}. (5)

Note that a dangerous job is never a job bundle, and also is not part of a bundle.
A dangerous job i ∈ Dλ becomes a misplaced dangerous job, if there exists a job
bundle J ∈ Bλ such that either wipJ − wJpi ≥ τ and i is scheduled before J in
the optimal schedule π∗, or wJpi − wipJ ≥ τ and J is scheduled before i in the
optimal schedule π∗.

Lemma 2. With respect to any real λ ≥ 0, there are at most 1/ε misplaced
dangerous jobs in the optimal schedule π∗.

Proof. Assume that job i is a misplaced dangerous job with respect to
J1, J2, . . . , Jk ∈ Bλ, and that i is scheduled after all these jobs Jj . Then

wiCi ≥
k∑

j=1

wipJj ≥
k∑

j=1

(wipJj − pJj wi) ≥ k τ ≥ k ε OPT.

For J ∈ Bλ, let i1, i2, . . . , ik be the set of misplaced dangerous jobs with respect
to J , such that il is scheduled before J for all indices l. Then,

∑

j∈J

wjCj ≥
∑

j∈J

k∑

l=1

wjpil
=

k∑

l=1

wJpil
≥

k∑

l=1

(wJpil
− pJwil

)

≥ k τ ≥ k ε OPT.

Therefore, there are at most 1/ε misplaced dangerous jobs. ��

The Constrained Minimum Weighted Sum of Job Completion Times Problem 303

Our next goal is to find a maximizer λ∗ for (4), to find a corresponding
schedule and corresponding bundles, and to be in full control of the resulting
misplaced dangerous jobs. This is accomplished through our third guessing step:
We guess the set of misplaced dangerous jobs, and for each such misplaced dan-
gerous job we guess its exact position within Chain. The resulting new prece-
dence constraints are denoted by Chain′. Note that this guessing step amounts
to enumerate O(n1/ε) subsets and O((2/ε)1/ε) possibilities for the positions; all
in all that is a polynomial amount of work. We arrive at our second version P ′(λ)
of the Lagrangian relaxation:

P ′(λ) = min
∑n

j=1 �λ
j Cπ

j − λU =
∑n

j=1 wj Cπ
j + λ (

∑n
j=1 uj Cπ

j − U)

s.t. π satisfies Chain′
(6)

For the rest of this section, we will keep the old notation of job bundles exactly
as introduced for P (λ), and we will not adapt it to the second relaxation P ′(λ).
Note that for all λ ≥ 0 the value P ′(λ) is (again) a lower bound on OPT, since
the optimal permutation π∗ satisfies the precedence constraints Chain′ and the
budget constraint

∑
j ujCj ≤ U .

Below we show how to determine a a maximizer λ∗ for (6) in polynomial
time. If the corresponding bundles and misplaced difficult jobs collide with the
data of our third guessing step, we simply cut off this guessing branch and move
on to the next guess.

Lemma 3. We may assume without loss of generality that for λ = 0 the
corresponding optimal solution to P ′(λ) does not satisfy the budget constraint∑n

j=1 ujCj ≤ U .
For λ = 2WP the corresponding optimal solution to P ′(λ) does satisfy the

budget constraint
∑n

j=1 ujCj ≤ U .

Proof. First we assume λ = 0. Then, the objective function in (6) becomes∑n
j=1 wjCj , that is, it becomes the objective function of (1). Since furthermore

the optimal permutation π∗ for (1) is feasible for (6), we have P ′(0) ≤ OPT.
In case the optimal schedule for (6) satisfies the budget constraint in (1), it is
feasible for (1) and hence optimal for (1). In this case there is nothing left to do.

Next we assume λ = 2WP . If a solution π for (6) does not satisfy the budget
constraint, then

∑n
j=1 ujC

π
j ≥ U +1 and its objective value is at least λ = 2WP .

If a solution π for (6) satisfies the budget constraint (as for instance the solution
π∗ does), then its objective value is at most WP . Hence, in this case the optimal
solution for (6) satifies the budget constraint. ��

For technical reasons, we now replace the budget bound U by the infinitesi-
mally larger bound U+γ. This does not change the combinatorics of the problem,
since all the job weights, job processing times, and job completion times are in-
tegers. However, it helps us to get rid of certain degeneracies. Our next step
is to determine in polynomial time a maximizer λ∗ for the second Lagrangian
relaxation P ′(λ∗). This can be done by a straightforward binary search that is
based on the following four observations:

304 A. Levin and G.J. Woeginger

– The cost of every permutation π as a function of λ is a linear function.
This function crosses the line λ = 0 in some integer between 0 and WP ,
and crosses the line λ = 2WP in some integer between −2WPU and
2WP 2

∑
j uj . Since we are using the modified budget bound U + γ, and

since all the job data are integers, this linear function can not have slope
zero.

– The cost of the optimal solution of (6) as a function of λ is the minimum of a
set of linear functions (one linear function for each permutation). Therefore,
this cost is a piecewise linear, concave function in λ.

– The (absolute value of the) difference between the slopes of two non-parallel
linear functions is at least 1/(2WP) and at most 2WP .

– The distance between two adjacent break-points on the lower envelope of
these functions is at least 1/(2WP).

Together with the maximizer λ∗ we also compute two optimal solutions α
and β for P ′(λ∗), such that the first solution α satisfies the budget constraint
∑n

j=1 ujC
α
j ≤ U , whereas the second solution β violates it with

∑n
j=1 ujC

β
j > U .

The existence of two such solutions can be established by standard observations:
The optimal permutations for λ = λ∗ − δ and λ = λ∗ + δ for some arbitrarily
small δ > 0 are also optimal for λ∗. If all optimal solutions for λ∗ would violate
the budget constraint, then P ′(λ∗+δ) > P ′(λ∗) and λ∗ would not maximize (6).
Similarly, if all optimal solutions for λ∗ would satisfy the budget constraint, then
they would satisfy it with strict inequality (that’s a consequence of the modified
budget bound U + γ). But then P ′(λ∗ − δ) > P ′(λ∗), and again λ∗ would not
maximize (6).

In general, when λ is changing then the corresponding set of job bundles in the
corresponding optimal schedule is also changing. By using small perturbations
of the job processing times, we may assume that in the point λ∗ at most one of
the following events happens:

– Two pieces J ′ and J ′′ (that may be job bundles or single jobs) are merged
into a single job bundle J .

– A job bundle J is split into two pieces J ′ and J ′′ (that again may be job
bundles or simple jobs).

Now we consider a minimal sequence of transpositions that transforms permu-
tation α into β. In each such transposition some job is swapped with another
job. Since α and β both are optimal permutations for P ′(λ∗), the swapped jobs
must have the same Smith ratio �λ∗

j /pj. We now argue that such a transposition
can not change the objective function a lot.

Lemma 4. Every transposition increases
∑

j wjCj by at most 2 ε OPT.

Proof. At least one of the two swapped jobs is not a job bundle (since the
ordering of job bundles is fully determined by the precedence constraints Chain).

First we consider the case where both swapped jobs i and i′ are single jobs
(and not job bundles), Without loss of generality we assume that in schedule α

The Constrained Minimum Weighted Sum of Job Completion Times Problem 305

job i is scheduled before job i′. Then, the swap increases
∑

j wjpj by an amount
of wipi′ − piwi′ . Since (i, i′) is not an active critical pair, this increase is at most
ε OPT.

Next, consider the case where a single job i is swapped with a job bundle
J . Since the schedules α and β place i and J in different relative orders, we
conclude that job i can not be a dangerous job.

– If α runs job i before J , then the swap changes
∑

j wjCj by wipJ − piwJ .
– If α runs job i after J , then the swap changes

∑
j wjCj by wJpi − pJwi.

In any case, the objective value
∑

j wjCj increases by at most |wipJ −piwJ |. We
now prove that increase is bounded by |wipJ − piwJ | ≤ 2 ε OPT. We distinguish
three subcases.

In the first subcase, we assume that the job bundle J does not change in λ∗.
Since i is not a misplaced dangerous job, we read from (5) that |wipJ − piwJ | ≤
τ ≤ ε OPT. This yields the desired inequality.

In the second subcase, we assume that the job bundle J is created in λ∗

by merging two pieces J ′ and J ′′ (that were job bundles for some λ = λ∗ − δ
sufficiently close to λ∗). In this case we have

|wiPJ − piwJ | = |wiPJ′ − piwJ′ + wiPJ′′ − piwJ′′ |
≤ |wiPJ′ − piwJ′ | + |wiPJ′′ − piwJ′′ |
≤ 2τ

≤ 2εOPT.

In the third subcase, we assume that the job bundle J results from splitting
a piece J ′ in λ∗ (that is: for λ < λ∗, piece J ′ is a job bundle, and for some
λ = λ∗ + δ sufficiently close to λ∗, piece J ′ is replaced with two pieces J and
J ′′). In this case we have

|wipJ − piwJ | = |wi(pJ′ − pJ′′) − pi(wJ′ − wJ′′)|
= |(wipJ′ − piwJ′) − (wipJ′′ − piwJ′′)|
≤ |wipJ′ − piwJ′ | + |wipJ′′ − piwJ′′ |
≤ 2τ

≤ 2εOPT.

Since we have settled all possible cases and subcases, the proof is complete. ��

Along the minimal sequence of transpositions that transforms permutation
α into β, we return the first permutation that satisfies the budget constraint∑

j ujCj ≤ U . Every permutation in this sequence constitutes an optimal solu-
tion with respect to the job weights �λ∗

. The permutation that comes just before
the returned permutation satisfies

∑
j wjCj ≤ OPT. By Lemma 4, the swapping

of jobs leading to the next permutation increases the w-cost by at most 2 ε OPT.
Hence, the returned solution has an objective value of at most (1+2ε) OPT. (And
if we take into account that because of our first guessing step we are not working

306 A. Levin and G.J. Woeginger

with the exact value of OPT, but only with an approximation thereof, then this
bound becomes the slightly weaker bound (1 + 2ε)(1 + ε) OPT). In any case, we
have established the following result.

Theorem 2. Problem CWSCT has a polynomial time approximation scheme.

4 Something about Smith and Horn

In a classical paper in scheduling theory, Smith [10] describes a polynomial time
algorithm for the problem of minimizing the sum of weighted job completion
times on a single machine (without any precedence constraints): A simple ex-
change argument shows that the jobs should be ordered by non-increasing Smith
ratios wj/pj.

In another classical paper, Horn [4] gives a polynomial time solution for the
problem of minimizing the sum of weighted job completion times on a single
machine under tree-like precedence constraints. In this paper, we are only inter-
ested in the following highly restricted special case: There are two job families
K1, . . . , Kk and L1, . . . , Lm. The jobs in the first family are totally ordered by
the single chain K1 → K2 → · · · → Kk. The jobs in the second family are all
independent of each other, and independent of the jobs in the first family.

Suppose that there are two consecutive jobs Ka → Kb in the chain with
wa/pa < wb/pb (that is, they ordered against their Smith ratios). Then, we may
assume that no other job Lc is scheduled between these two jobs: If wc/pc <
wb/pb, then Lc is better swapped with Kb, and if wc/pc > wa/pa, then Lc is
better swapped with Ka. (A similar swapping argument works, in case there
are more than one jobs scheduled between Ka and Kb.) Hence, in any optimal
schedule Ka and Kb are consecutive, and we may merge them into a single new
job with processing time pa + pb and weight wa + wb. Optimal schedules for the
new instance translate immediately into optimal schedules for the old instance,
and vice versa. Note that the optimal objective value of the new instance equals
wapb plus the objective value of the old instance; however, this shift in the
objective value does not concern the structure of optimal solutions.

Horn’s [4] algorithm repeats this merging operation over and over again, as
long as there are consecutive (possibly merged) jobs in the chain that are ordered
against their Smith ratios. When this procedure terminates, the chain has been
cut into a number of so-called bundles of merged jobs. Some bundles may consist
of only one job. For every bundle J , we denote by pJ the total processing time
of all the jobs in J and by wJ their total weight. Along the chain the bundles are
ordered by non-increasing Smith ratios wJ/pJ . Thus the precedence constraints
become non-restrictive and disappear. We are left with a number of job bundles
that result from the chain, and with a number of original (non-bundle, non-chain)
jobs.

The Constrained Minimum Weighted Sum of Job Completion Times Problem 307

References

1. J.A. Aslam, A. Rasala, C. Stein, and N.E. Young (1999). Improved bicriteria
existence theorems for scheduling. In Proceedings of the 10th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’1999), 846–847.

2. M.R. Garey and D.S. Johnson (1979). Computers and Intractability. Freeman,
San-Francisco.

3. M.X. Goemans and R. Ravi (1996). The constrained minimum spanning tree
problem. Proceedings of the 5th Scandinavian Workshop on Algorithm Theory
(SWAT’1996), LNCS 1097, Springer Verlag, 66–75.

4. W.A. Horn (1972). Single-machine job sequencing with tree-like precedence order-
ing and linear delay penalties. SIAM Journal on Applied Mathematics 23, 189–202.

5. J.-H. Lin and J.S. Vitter (1992). ε-approximations with minimum packing viola-
tion. Proceedings of the 24th Annual ACM Symposium on the Theory of Computing
(STOC’1992), 771–782.

6. S.T. McCormick and M.L. Pinedo (1995). Scheduling n independent jobs on
m uniform machines with both flowtime and makespan objectives: a parametric
analysis. ORSA Journal on Computing 7, 63–77.

7. A. Rasala, C. Stein, E. Torng, and P. Uthaisombut (2002). Existence the-
orems, lower bounds and algorithms for scheduling to meet two objectives. In
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’2002), 723–731.

8. R. Ravi (2002). Bicriteria spanning tree problems. Proceedings of the 5th Workshop
on Approximation Algorithms for Combinatorial Optimization (APPROX’2002),
LNCS 2462, Springer Verlag, 3–4.

9. D.B. Shmoys and E. Tardos (1993). An approximation algorithm for the gen-
eralized assignment problem. Mathematical Programming 62, 461–474.

10. W.E. Smith (1956). Various optimizers for single-stage production. Naval Research
Logistics Quarterly 3, 59–66.

11. C. Stein and J. Wein (1997). On the existence of schedules that are near-optimal
for both makespan and total-weighted completion time. Operations Research Let-
ters 21, 115–122.

	Introduction
	NP-hardness
	The Polynomial Time Approximation Scheme
	Something about Smith and Horn

