Skip to main content
Log in

Constraint incorporation in optimization

  • Full Lenght Paper
  • Published:
Mathematical Programming Submit manuscript

Abstract

Numerical methods for solving constrained optimization problems need to incorporate the constraints in a manner that satisfies essentially competing interests; the incorporation needs to be simple enough that the solution method is tractable, yet complex enough to ensure the validity of the ultimate solution. We introduce a framework for constraint incorporation that identifies a minimal acceptable level of complexity and defines two basic types of constraint incorporation which (with combinations) cover nearly all popular numerical methods for constrained optimization, including trust region methods, penalty methods, barrier methods, penalty-multiplier methods, and sequential quadratic programming methods. The broad application of our framework relies on addition and chain rules for constraint incorporation which we develop here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Tal A., Zibulevsky M. (1997) Penalty/barrier multiplier methods for convex programming problems. SIAM J. Optim. 7, 347–366

    Article  MATH  MathSciNet  Google Scholar 

  2. Boggs P., Tolle J. (1995) Sequential quadratic programming Acta numerica, Acta Numer. Cambridge University Press, Cambridge, pp. 1–51

    Google Scholar 

  3. Boukari D., Fiacco A.V. (1995) Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993. Optimization 32, 301–334

    MATH  MathSciNet  Google Scholar 

  4. Byrd R., Gould N., Nocedal J., Waltz R. (2004) An active set algorithm for nonlinear programming using linear programming and equality constrained subproblems. Math. Program. 100, 27–48

    MATH  MathSciNet  Google Scholar 

  5. Contaldi G., DiPillo G., Lucidi S. (1993) A continuously differentiable exact penalty function for nonlinear programming problems with unbounded feasible set. Oper. Res. Lett. 14, 153–161

    Article  MATH  MathSciNet  Google Scholar 

  6. Demyanov V.F., DiPillo G., Facchinei F. (1998) Exact penalization via Dini and Hadamard conditional derivatives. Optim. Methods Softw. 9, 19–36

    MATH  MathSciNet  Google Scholar 

  7. DiPillo G. (1994) Exact Penalty Methods. Algorithms for Continuous Optimization (Il Ciocco, 1993). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer, Dordrecht 434, 209–253

  8. DiPillo G., Facchinei F. (1995) Exact barrier function methods for Lipschitz programs. Appl. Math. Optim. 32, 1–31

    Article  MathSciNet  Google Scholar 

  9. DiPillo G., Facchinei F. Regularity conditions and exact penalty functions in Lipschitz programming problems. Nonsmooth optimization: methods and applications (Erice, 1991) pp. 107–120. Gordon and Breach, Montreux, (1992)

  10. DiPillo G., Facchinei F., Grippo L. (1992) An RQP algorithm using a differentiable exact penalty function for inequality constrained problems. Math. Program. Series A 55, 49–68

    Article  MathSciNet  Google Scholar 

  11. DiPillo G., Grippo L., Lucidi S. (1997) Smooth transformation of the generalized minimax problem. J. Optim. Theory Appl. 95, 1–24

    Article  MathSciNet  Google Scholar 

  12. DiPillo G., Grippo L., Lucidi S. (1993) A smooth method for the finite minimax problem. Math. Program. 60, 187–214

    Article  MathSciNet  Google Scholar 

  13. DiPillo G., Lucidi S., Palagi L. (1999) A shifted-barrier primal-dual algorithm model for linearly constrained optimization problems. Comput. Optim. Appl. 12, 157–188

    Article  MathSciNet  Google Scholar 

  14. DiPillo G., Lucidi S., Palagi L. (1993) An exact penalty-Lagrangian approach for a class of constrained optimization problems with bounded variables. Optimization 28, 129–148

    MathSciNet  Google Scholar 

  15. Facchinei F. (1997) Robust recursive quadratic programming algorithm model with global and superlinear convergence properties. J. Optim. Theory Appl. 92, 543–579

    Article  MATH  MathSciNet  Google Scholar 

  16. Facchinei F. (1991) Exact penalty functions and Lagrange multipliers. Optimization 22, 579–606

    MATH  MathSciNet  Google Scholar 

  17. Facchinei F., Liuzzi G., Lucidi S. (2003) A truncated Newton method for the solution of large-scale inequality constrained minimization problems. Comput. Optim. Appl. 25, 85–122

    Article  MATH  MathSciNet  Google Scholar 

  18. Facchinei F., Lucidi S. (1998) Convergence to second-order stationary points in inequality constrained optimization. Math. Oper. Res. 23, 746–766

    Article  MATH  MathSciNet  Google Scholar 

  19. Facchinei F., Lucidi S. (1992) A class of penalty functions for optimization problems with bound constraints. Optimization 26, 239–259

    MATH  MathSciNet  Google Scholar 

  20. Fletcher R. (1987) Practical Methods of Optimization. Wiley, New York

    MATH  Google Scholar 

  21. Nocedal J., Wright S.J. (1999) Numerical Optimization. Springer, Berlin Heidelberg New York

    Book  MATH  Google Scholar 

  22. Rockafellar R.T., Wets R.J.-B. (1998) Variational Analysis. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  23. Sadjadi S., Ponnambalam K.: Advances in trust region algorithms for constrained optimization. In: Proceedings of the Stieltjes Workshop on High Performance Optimization Techniques (Delft), Appl. Numer. Math. 29, 423–443 (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam B. Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, A.B. Constraint incorporation in optimization. Math. Program. 110, 615–639 (2007). https://doi.org/10.1007/s10107-006-0016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0016-1

Keywords

Navigation