Skip to main content
Log in

Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper presents a robust branch-cut-and-price algorithm for the Capacitated Minimum Spanning Tree Problem (CMST). The variables are associated to q-arbs, a structure that arises from a relaxation of the capacitated prize-collecting arborescence problem in order to make it solvable in pseudo-polynomial time. Traditional inequalities over the arc formulation, like Capacity Cuts, are also used. Moreover, a novel feature is introduced in such kind of algorithms: powerful new cuts expressed over a very large set of variables are added, without increasing the complexity of the pricing subproblem or the size of the LPs that are actually solved. Computational results on benchmark instances from the OR-Library show very significant improvements over previous algorithms. Several open instances could be solved to optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja R., Orlin J., Sharma D. (2001) Multi-exchange neighborhood search structures for the capacitated minimum spanning tree problem. Math. Program. 91, 71–97

    MATH  MathSciNet  Google Scholar 

  2. Ahuja R., Orlin J., Sharma D. (2003) A composite very large-scale neighborhood structure for the capacitated minimum spanning tree problem. Oper. Res. Lett. 31(3): 185–194

    Article  MATH  MathSciNet  Google Scholar 

  3. Amberg A., Domschke W., Voss S. (1996) Capacitated minimum spanning trees: Algorithms using intelligent search. Comb. Optim. Theory Pract. 1, 9–39

    Google Scholar 

  4. Araque J., Hall L., Magnanti T. (1990) Capacitated trees, capacitated routing, and associated polyhedra. Technical Report OR232-90. MIT, Operations Research Center

    Google Scholar 

  5. Barahona F., Anbil R. (2000) The volume algorithm: producing primal solutions with a subgradient method. Math. Program. 87, 385–399

    Article  MATH  MathSciNet  Google Scholar 

  6. Barnhart C., Hane C., Vance P. (2000) Using branch-and-price-and-cut to solve origin-destination integer multicommodity flow problems. Oper. Res. 40, 318–326

    Google Scholar 

  7. Barnhart C., Johnson E.L., Nemhauser G.L., Savelsbergh M.W.P., Vance P.H. (1998) Branch-and-price: column generation for solving huge integer programs. Oper. Res. 46, 316–329

    MATH  MathSciNet  Google Scholar 

  8. Belov G., Letchford A., Uchoa E.: A node-flow model for 1D stock cutting: Robust branch-cut-and-price. Tech. Rep. RPEP Vol.5 no.7, Universidade Federal Fluminense, Engenharia de Produção, Niterói, Brazil (2005)

  9. Bergson, J.: Uma heurí stica lagrangeana para o problema da árvore geradora capacitada de custo mí nimo. Master’s thesis, Universidade Federal do Rio de Janeiro (2002)

  10. Christofides N., Mingozzi A., Toth P. (1981) Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations. Math. Program. 20, 255–282

    Article  MATH  MathSciNet  Google Scholar 

  11. Duhamel, C., Gouveia, L., Moura, P., Souza, M.C.: Models and heuristics for a minimum arborescence problem. Tech. Rep. LIMOS/RR-04-13, Institut Supérieur d’Informatique, de Modélisation et de leurs Applications (2004). URL: http://www.isima.fr/limos/publi/RR-04-13.pdf

  12. Esau L., Williams K. (1966) On teleprocessing system design part ii: a method for approximating the optimal network. IBM Syst. J. 5, 142–147

    Article  Google Scholar 

  13. Felici, G., Gentile, C., Rinaldi, G.: Solving large MIP models in supply chain management by branch & cut. Tech. rep., Istituto di Analisi dei Sistemi ed Informatica del CNR, Italy (2000)

  14. Fukasawa R., Longo H., Lysgaard J., Poggi de Aragão M., Reis M., Uchoa E., Werneck R.F. (2006) Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Math. Program. 106, 491–511

    Article  MATH  MathSciNet  Google Scholar 

  15. Gabow H.N., Galil Z., Spencer T., Tarjan R.E. (1986) Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6(2): 109–122

    Article  MATH  MathSciNet  Google Scholar 

  16. Gavish B. (1983) Formulations and algorithms for the capacitated minimal directed tree problem. J. ACM 30, 118–132

    Article  MATH  MathSciNet  Google Scholar 

  17. Gouveia L. (1995) A 2n-constraint formulation for the capacitated minimal spanning tree problem. Oper. Res. 43, 130–141

    MathSciNet  MATH  Google Scholar 

  18. Gouveia L., Hall L. (2002) Multistars and directed flow formulations. Networks 40, 188–201

    Article  MATH  MathSciNet  Google Scholar 

  19. Gouveia L., Lopes M. (2005) The capacitated minimum spanning tree problem: On improved multistar constraints. Eur. J. Oper. Res. 160, 47–62

    Article  MATH  Google Scholar 

  20. Gouveia L., Martins P. (1999) The capacitated minimal spanning tree problem: an experiment with a hop-indexed model. Ann. Oper. Res. 86, 271–294

    Article  MATH  MathSciNet  Google Scholar 

  21. Gouveia L., Martins P. (2000) A hierarchy of hop-indexed models for the capacitated minimum spanning tree problem. Networks 35, 1–16

    Article  MATH  MathSciNet  Google Scholar 

  22. Gouveia L., Martins P. (2005) The capacitated minimum spanning tree problem: revisiting hop-indexed formulations. Comput. Oper. Res. 32, 2345–2452

    Article  Google Scholar 

  23. Gouveia L., Saldanha-da-Gama F. (2006) On the capacitated concentrator location problem: a reformulation by discretization. Comput. Oper. Res. 33, 1242–1258

    Article  MATH  Google Scholar 

  24. Gzara F., Goffin J.L. (2005) Exact solution of the centralized network design problem on directed graphs. Networks 45, 181–192

    Article  MATH  MathSciNet  Google Scholar 

  25. Hall L. (1996) Experience with a cutting plane algorithm for the capacitated spanning tree problem. INFORMS J. Comput. 8, 219–234

    MATH  Google Scholar 

  26. Hall, L., Magnanti, T.: A polyhedral intersection theorem for capacitated spanning trees. Math. Oper. Res. 17 (1992)

  27. Kim D., Barnhart C., Ware K., Reinhardt G. (1999) Multimodal express package delivery: a service network design application. Transport. Sci. 33, 391–407

    MATH  Google Scholar 

  28. Kohl N., Desrosiers J., Madsen O., Solomon M., Soumis F. (1999) 2-Path cuts for the vehicle routing problem with time windows. Transport. Sci. 33, 101–116

    MATH  Google Scholar 

  29. Letchford A.N., Salazar J.J. (2006) Projection results for vehicle routing. Math. Program. 105, 251–274

    Article  MATH  MathSciNet  Google Scholar 

  30. Longo H., Poggi de Aragão M., Uchoa E. (2006) Solving capacitated arc routing problems using a transformation to the CVRP. Comput. Oper. Res. 33, 1823–1837

    Article  MATH  Google Scholar 

  31. Lysgaard J., Letchford A., Eglese R. (2004) A new branch-and-cut algorithm for the capacitated vehicle routing problem. Math. Program. 100, 423–445

    Article  MATH  MathSciNet  Google Scholar 

  32. Malik, K., Yu, G.: A branch and bound algorithm for the capacitated minimum spanning tree problem. Networks 23 (1993)

  33. Martins, P.: Enhanced second order algorithm applied to the capacitated minimum spanning tree problem. Comput. Oper. Res. (2006). (To appear)

  34. Nemhauser G., Wolsey L. (1988) Integer and combinatorial optimization. Wiley, New York

    MATH  Google Scholar 

  35. Pigatti, A., Poggi de Aragão, M., Uchoa, E.: Stabilized branch-and-cut-and-price for the generalized assignment problem. In: Annals of GRACO’05, Electronic Notes in Discrete Mathematics, vol. 19, pp. 389–395 (2005)

  36. Poggi de Aragão, M., Uchoa, E.: Integer program reformulation for robust branch-and-cut-and-price. In: Annals of Mathematical Programming in Rio, pp. 56–61. Búzios, Brazil (2003)

  37. Rolland E., Patterson R., Pirkul H. (1999) Memory adaptive reasoning and greedy assignment techniques for the capacitated minimum spanning tree problem. J. Heuristics 5, 159–180

    Article  MATH  Google Scholar 

  38. Sharaiha Y., Gendreau M., Laporte G., Osman I. (1997) A tabu search algorithm for the capacitated shortest spanning tree problem. Networks 29, 161–171

    Article  MATH  MathSciNet  Google Scholar 

  39. Souza M., Duhamel C., Ribeiro C. (2003) A GRASP heuristic for the capacitated minimum spanning tree problem using a memory-based local search strategy. In: Resende M., de Sousa J.(eds) Metaheuristics: Computer decision-making. Kluwer Academic Publishers, Dordrecht, pp. 627–658

    Google Scholar 

  40. Toth P., Vigo D. (1995) An exact algorithm for the capacitated shortest spanning arborescence. Ann. Oper. Res. 61, 121–141

    Article  MATH  MathSciNet  Google Scholar 

  41. Van den Akker J., Hurkens C., Savelsbergh M. (2000) Time-indexed formulation for machine scheduling problems: column generation. INFORMS J. Comput. 12, 111–124

    Article  MATH  MathSciNet  Google Scholar 

  42. Vanderbeck F. (1998) Lot-sizing with start-up times. Manage. Sci. 44, 1409–1425

    Article  MATH  Google Scholar 

  43. Weisstein, E.: Farey sequence. From MathWorld–A Wolfram Web Resource (2006). URL: http://mathworld.wolfram.com/FareySequence.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Fukasawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchoa, E., Fukasawa, R., Lysgaard, J. et al. Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation. Math. Program. 112, 443–472 (2008). https://doi.org/10.1007/s10107-006-0043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0043-y

Mathematics Subject Classification (1991)

Navigation