Skip to main content
Log in

Quadratic programming and combinatorial minimum weight product problems

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We present a fully polynomial time approximation scheme (FPTAS) for minimizing an objective (a T x + γ)(b T x + δ) under linear constraints A xd. Examples of such problems are combinatorial minimum weight product problems such as the following: given a graph G = (V,E) and two edge weights \({a},{b}: E \rightarrow \mathbb{R}_+\) find an st path P that minimizes a(P)b(P), the product of its edge weights relative to a and b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja R., Magnanti T., Orlin J. (1993) Network Flows: Theory, Algorithms and Applications. Prentice Hall, New Jersey

    Google Scholar 

  2. Avriel M., Dievert W.E., Schaible S., Zhang I. (1988) Generalized Convexity. Plenum, New York

    Google Scholar 

  3. Faigle U., Kern W., Still G. (2001)Algorithmic Principles of Mathematical Programming. Kluwer, Dordrecht

    Google Scholar 

  4. Garey M., Johnson D. (1979) Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, San Francisco

    MATH  Google Scholar 

  5. Gusfield D. (1980) Sensitivity analysis for combinatorial optimization. Memorandum UCB/ERL M80/22. Electronics Research Laboratory, Berkeley

    Google Scholar 

  6. Kozlov M., Tarasov S., Hacijan L. (1979) Polynomial solvability of convex quadratic programming. Soviet Math. Doklady 20, 1108–1111

    MATH  Google Scholar 

  7. Kuno T. (1999) Polynomial algorithms for a class of minimum rank-two cost path problems. J. Global Optim 15, 405–417

    Article  MATH  MathSciNet  Google Scholar 

  8. Megiddo N. (1979) Combinatorial Optimization with rational objective functions. Math OR 4(4): 414–424

    Article  MATH  MathSciNet  Google Scholar 

  9. Pardalos P., Vavasis S. (1991) Quadratic programming with one negative eigenvalue is NP-hard. J. Global Optim. 1, 15–22

    Article  MATH  MathSciNet  Google Scholar 

  10. Schrijver A. (1986) Theory of Linear and Integer Programming. Wiley, New york

    MATH  Google Scholar 

  11. Vavasis S. (1992) Approximation algorithms for indefinite quadratic programming. Math. Prog. 57, 279–311

    Article  MathSciNet  MATH  Google Scholar 

  12. Vavasis S. (1991) Nonlinear optimization: complexity issues. Oxford University Press, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Kern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, W., Woeginger, G. Quadratic programming and combinatorial minimum weight product problems. Math. Program. 110, 641–649 (2007). https://doi.org/10.1007/s10107-006-0047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0047-7

Keywords

Mathematics Subject Classification (2000)