Skip to main content
Log in

Solving linear programs from sign patterns

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper is an attempt to provide a connection between qualitative matrix theory and linear programming. A linear program \(\max\{cx \mid Ax=b, x\geq 0\}\) is said to be sign-solvable if the set of sign patterns of the optimal solutions is uniquely determined by the sign patterns of A, b, and c. It turns out to be NP-hard to decide whether a given linear program is sign-solvable or not. We then introduce a class of sign-solvable linear programs in terms of totally sign-nonsingular matrices, which can be recognized in polynomial time. For a linear program in this class, we devise an efficient combinatorial algorithm to obtain the sign pattern of an optimal solution from the sign patterns of A, b, and c. The algorithm runs in O(mγ) time, where m is the number of rows of A and γ is the number of all nonzero entries in A, b, and c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando T. and Brualdi R.A. (1994). Sign-central matrices. Linear Algebra Appl. 208/209: 283–295

    Article  MathSciNet  Google Scholar 

  2. Ben-Tal A. and Nemirovski A. (1999). Robust solutions of uncertain linear programs. Oper. Res. Lett. 25: 1–13

    Article  MathSciNet  MATH  Google Scholar 

  3. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids. Cambridge University Press, Cambridge (1993); 2nd edn, 1999

  4. Brualdi R.A. and Shader B.L. (1995). Matrices of Sign-Solvable Linear Systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Chinneck J.W., Ramadan, K.: Linear programming with interval coefficients. J. Oper. Res. Soc. 51, 209–220

  6. Gabow H.N. and Tarjan R.E. (1989). Faster scaling algorithms for network problems. SIAM J. Comput. 18: 1013–1036

    Article  MathSciNet  MATH  Google Scholar 

  7. Gal T. (1995) Postoptimal Analyses, Parametric Programming, and Related Topics, 2nd edn. Walter de Gruyter, Berlin

    Google Scholar 

  8. Gal T., Greenberg H.J. (eds.) (1997) Advances in Sensitivity Analysis and Parametric Programming. Kluwer, Boston

    MATH  Google Scholar 

  9. Hopcroft J.E. and Karp R.M. (1973). An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2: 225–231

    Article  MathSciNet  MATH  Google Scholar 

  10. Karmarkar N. (1984). A new polynomial-time algorithm in linear programming. Combinatorica 4: 373–395

    Article  MathSciNet  MATH  Google Scholar 

  11. Khachiyan, L.G.: A polynomial time algorithm in linear programming (in Russian). Dokl. Akad. Nauk SSSR 244, 1093–1096 (1979) English translation: Sov. Math., Dokl. 20, 191–194 (1979)

  12. Kim S.-J. and Shader B.L. (2000). Linear systems with signed solutions. Linear Algebra Appl. 313: 21–40

    Article  MathSciNet  MATH  Google Scholar 

  13. Kim S.-J. and Shader B.L. (2002). On matrices which have signed null-spaces. Linear Algebra Appl. 353: 245–255

    Article  MathSciNet  MATH  Google Scholar 

  14. Klee V., Ladner R. and Manber R. (1984). Sign-solvability revisited. Linear Algebra Appl. 59: 131–158

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee G.-Y. and Shader B.L. (1998). Sign-consistency and solvability of constrained linear systems. Electron. J. Linear Algebra 4: 1–18

    MathSciNet  Google Scholar 

  16. Lovász, L., Plummer, M.D.: Matching Theory, Annals of Discrete Mathematics, vol. 29. , Amsterdam (1986)

  17. McCuaig W. (2001). Brace decomposition. J. Graph Theory 38: 124–169

    Article  MathSciNet  MATH  Google Scholar 

  18. McCuaig W. (2004). Pólya’s permanent problem. Electron. J. Comb. 11: R79

    MathSciNet  Google Scholar 

  19. Pólya G. (1913). Aufgabe 424. Arch. Math. Phys. 20: 271

    Google Scholar 

  20. Robertson N., Seymour P.D. and Thomas R. (1999). Permanents, Pfaffian orientations, and even directed circuits. Ann. Math. 150: 929–975

    Article  MathSciNet  MATH  Google Scholar 

  21. Samuelson, P.A.: Foundations of Economics Analysis. Harvard University Press, 1947; Atheneum, New York (1971)

  22. Shao J.-Y. and Ren L.-Z. (2004). Some properties of matrices with signed null spaces. Discret. Math. 279: 423–435

    Article  MathSciNet  MATH  Google Scholar 

  23. Seymour P. and Thomassen C. (1987). Characterization of even directed graphs. J. Comb. Theory B 42: 36–45

    Article  MathSciNet  MATH  Google Scholar 

  24. Vazirani V.V. and Yannakakis M. (1989). Pfaffian orientations, 0-1 permanents and even cycles in directed graphs. Discret. Appl. Math. 25: 179–190

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naonori Kakimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwata, S., Kakimura, N. Solving linear programs from sign patterns. Math. Program. 114, 393–418 (2008). https://doi.org/10.1007/s10107-007-0107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0107-7

Mathematics Subject Classification (2000)