Skip to main content
Log in

The K-moment problem with densities

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Given a compact basic semi-algebraic set \({\mathbf{K}} \subset {\mathbb{R}}^n\) , a rational fraction \(f:{\mathbb{R}}^n\to{\mathbb{R}}\) , and a sequence of scalars y = (y α), we investigate when \(y_\alpha =\int_{\mathbf{K}} x^\alpha f\,d\mu\) holds for all \(\alpha\in{\mathbb{N}}^n\) , i.e., when y is the moment sequence of some measure fdμ, supported on K. This yields a set of (convex) linear matrix inequalities (LMI). We also use semidefinite programming to develop a converging approximation scheme to evaluate the integral ∫ fdμ when the moments of μ are known and f is a given rational fraction. Numerical expreriments are also provided. We finally provide (again LMI) conditions on the moments of two measures \(\nu,\mu\) with support contained in K, to have \(d\nu=f d\mu\) for some rational fraction f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash R. (1972). Real Analysis and Probability. Academic, San Diego

    Google Scholar 

  2. Berg C. (1980). The multidimensional moment problem and semi-groups. Proc. Symp. Appl. Math. 37: 110–124

    Google Scholar 

  3. Curto R.E. and Fialkow L.A. (2000). The truncated complex K-moment problem. Trans. Am. Math. Soc. 352: 2825–2855

    Article  MathSciNet  MATH  Google Scholar 

  4. De Klerk E. and Jibetean D. (2006). Global minimization of a rational functions: a semidefinite programming approach. Math. Program. 106: 93–109

    Article  MathSciNet  MATH  Google Scholar 

  5. Gautschi W. (2004). Orthogonal Polynomials. Oxford University Press, Oxford

    MATH  Google Scholar 

  6. Jacobi T. and Prestel A. (2001). Distinguished representations of strictly positive polynomials. J. Reine. Angew. Math. 532: 223–235

    MathSciNet  MATH  Google Scholar 

  7. Lasserre J.B. (2001). Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11: 796–817

    Article  MathSciNet  MATH  Google Scholar 

  8. Maserick P.H. and Berg C. (1984). Exponentially bounded positive definite functions. Ill. J. Math. 28: 162–179

    MathSciNet  MATH  Google Scholar 

  9. Nussbaum A.E. (1966). Quasi-analytic vectors. Ark. Math. 6: 179–191

    Article  MathSciNet  Google Scholar 

  10. Petersen L.C. (1982). On the relation between the multidimensional moment problem and the one dimensional moment problem. Math. Scand. 51: 361–366

    MathSciNet  MATH  Google Scholar 

  11. Putinar M. (1993). Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42: 969–984

    Article  MathSciNet  MATH  Google Scholar 

  12. Schmüdgen K. (1991). The K-moment problem for compact semi-algebraic sets. Math. Ann. 289: 203–206

    Article  MathSciNet  MATH  Google Scholar 

  13. Van Deun J., Bultheel A. and González Vera P. (2005). On computing rational Gauss-Chebyshev quadrature formulas. Math. Comput. 75: 307–326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean B. Lasserre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasserre, J.B. The K-moment problem with densities. Math. Program. 116, 321–341 (2009). https://doi.org/10.1007/s10107-007-0118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0118-4

Keywords

Mathematics Subject Classification (2000)