Skip to main content

Advertisement

Log in

Error bounds for systems of lower semicontinuous functions in Asplund spaces

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, using the Fréchet subdifferential, we derive several sufficient conditions ensuring an error bound for inequality systems in Asplund spaces. As an application we obtain in the context of Banach spaces a global error bound for quadratic nonconvex inequalities and we derive necessary optimality conditions for optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asplund E. (1968). Fréchet differentiability of convex functions. Acta Math. 121: 31–47

    Article  MathSciNet  MATH  Google Scholar 

  2. Auslender A. and Crouzeix J.P. (1988). Global regularity theorems. Math. Oper. Res. 13: 243–253

    MathSciNet  MATH  Google Scholar 

  3. Auslender, A., Teboule, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer Monographs in Mathematics (2003)

  4. Azé, D.: A survey on error bounds for lower semicontinuous functions. Proceedings of 2003 MODE-SMAI Conference, 1–17 (electronic), ESAIM Proc., 13, EDP Sci., Les Ulis (2003)

  5. Azé D. and Corvellec J-N. (2002). On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. (electronic) 12(4): 913–927

    Article  MATH  Google Scholar 

  6. Azé, D., Corvellec, J-N.: Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10(3), 409–425 (2004) (electronic)

    Google Scholar 

  7. Bartelt, M., Li, W.: Exact order of Hoffman’s error bounds for elliptic quadratic inequalities derived from vector-valued Chebyshev approximation. Math. Program. Ser. B 223–253 (2000)

  8. Bosch P., Jourani A. and Henrion R. (2004). Sufficient conditions for error bounds and applications. Appl. Math. Optim. 50(2): 161–181

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauschke H., Borwein J.M. and Li W. (1999). Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G) and error bounds in convex optimization. Math. Program. 86: 135–160

    Article  MathSciNet  MATH  Google Scholar 

  10. Burke J.V. and Tseng P. (1996). A unified analysis of Hoffman’s bound via Fenchel duality. SIAM J. Optim. 6: 265–282

    Article  MathSciNet  MATH  Google Scholar 

  11. Burke J.V. and Ferris M. (1993). Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31(5): 1340–1359

    Article  MathSciNet  MATH  Google Scholar 

  12. Burke J.V. and Deng S. (2002). Weak sharp minima revisited, part 1: basic theory. Control Cybernetics 31: 439–469

    MathSciNet  MATH  Google Scholar 

  13. Burke J.V. and Deng S. (2005). Weak sharp minima revisited, part 2: application to linear regularity and error bounds. Math. Program. Ser. B 104: 235–261

    Article  MathSciNet  MATH  Google Scholar 

  14. Borwein J.M. and Fitzpatrick S. (1989). Existence of nearest points in Banach spaces. Can. J. Math.(XLI) 4: 702–720

    MathSciNet  Google Scholar 

  15. Borwein J.M., Treiman J. and Zhu Q. (1998). Necessary conditions for constrained optimization problems with semicontinuous and continuous data. Trans. Amer. Math. Soc. 350: 2409–2429

    Article  MathSciNet  MATH  Google Scholar 

  16. Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley, New York

    MATH  Google Scholar 

  17. Deville R., Godefroy G. and Zisler V. (1993). Smoothness and Renorming in Banach spaces. Wiley, New York

    Google Scholar 

  18. Ekeland I. (1974). On the variational principle. J. Math. Anal. Appl. 47: 324–353

    Article  MathSciNet  MATH  Google Scholar 

  19. Fabian M. (1989). Subdifferentiability and trustwothiness in the light of a new variational principle of Borwein and Preiss. Acta Univ. Carolinae 30: 51–56

    MathSciNet  MATH  Google Scholar 

  20. Halkin H. (1974). Implicit functions and optimization problems without continuous differentiability of the data. SIAM J. Control 12: 229–236

    Article  MathSciNet  MATH  Google Scholar 

  21. Hoffman A.J. (1952). On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Standards 49: 263–265

    Google Scholar 

  22. Ioffe A. (1979). Regular Points of Lipschitz functions. Trans. Amer. Soc. 251: 61–69

    Article  MathSciNet  MATH  Google Scholar 

  23. Ioffe A. (1989). Approximate subdifferential and application, Part 3. Mathematika 36: 1–38

    Article  MathSciNet  MATH  Google Scholar 

  24. Ioffe A. (1990). Proximal analysis and Approximate subdifferential, J. Lond. Math. Soc. 41: 175–192

    Article  MathSciNet  MATH  Google Scholar 

  25. Jourani A. (2000). error bound, local controlbility and sensivity analysis. SIAM J. Control Optim. 38: 947–970

    Article  MathSciNet  MATH  Google Scholar 

  26. Jourani A. and Thibault L. (1995). Metric inequality and subdifferential calculus in Banach spaces. Set-valued Anal. 3: 87–100

    Article  MathSciNet  MATH  Google Scholar 

  27. Klatte D. and Li W. (1999). Asymptotic Constraint qualifications and error bounds for convex inequalities. Math. Program. 84: 137–160

    MathSciNet  MATH  Google Scholar 

  28. Lewis A.S. and Pang J.S. (1997). Error bound for convex inequality systems. In: Crouzeix, J.P. (eds) Generalized convexity and generalized monotonicity Proceedings of the fifth Sumposium on generalized convexity., pp 75–100. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  29. Li W. (1997). Abadie’s constraint qualification, metric regularity and error bound for differentiable convex inequalities. SIAM J.Optim. 7(4): 966–978

    Article  MathSciNet  MATH  Google Scholar 

  30. Luo X.D. and Luo Z.Q. (1994). Extension of Hoffman’s error bound to polynominal systems. SIAM J. Optim. 4: 383–392

    Article  MathSciNet  MATH  Google Scholar 

  31. Luo Z.Q. and Sturn J.F. (2000). Error bounds for quadratic systems. In: Frenk, H. (eds) High Performance Optimization., pp 383–404. Kluwer, Dordrecht

    Google Scholar 

  32. Luo Z.Q. and Pang J.S. (1994). Error bounds for the analytic systems and their applications. Math. Program. 67: 1–28

    Article  MathSciNet  Google Scholar 

  33. Magasarian O.L. (1985). A condition number for differentiable convex inequalities. Math. of Oper. Res. 10: 175–179

    Article  Google Scholar 

  34. Magasarian O.L. and Shiau T.H. (1986). Error bounds for monotone linear complementarity problems. Math Program. 36: 81–89

    Article  Google Scholar 

  35. Michel Ph. and Penot J.-P. (1992). A generalized derivative for calm and stable functions. Diff. Integ. Equ. 5(2): 433–454

    MathSciNet  MATH  Google Scholar 

  36. Michel, Ph., Penot, J.-P.: Calcul sous-différentiel pour des fonctions lipschitziennes et non lipschitziennes. C.R. Acad. Sci. Paris 298, série I 269–272(1984)

  37. Mordukhovich, B.S.: On necessary conditions for an extremum in nonsmooth optimization, Dokl. AN SSSR 283 (1985), 815-821; English Trans. in Soviet Math. Dokl. (1985)

  38. Mordukhovich B.S. and Shao Y. (1996). Nonsmooth sequential analysis in Asplund Spaces. Trans. Amer. Math.Soc. 348: 1235–1280

    Article  MathSciNet  MATH  Google Scholar 

  39. Mordukhovich B.S. and Wang B. (2002). Necessary suboptimality and optimality conditions via variational Principle. SIAM J. Control Optim. 41: 623–640

    Article  MathSciNet  MATH  Google Scholar 

  40. Mordukhovich, B.S.: Variational analysis and generalized differentiation. I. Basic theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330. Springer, Berlin (2006)

  41. Mordukhovich, B.S.: Variational analysis and generalized differentiation. II. Applications. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 331. Springer, Berlin (2006)

  42. Ngai H. and Théra M. (2001). Metric inequality, subdifferential calculus and applications. Set-Valued Anal. 9: 187–216

    Article  MathSciNet  MATH  Google Scholar 

  43. Ngai H. and Théra M. (2002). On necessary conditions for nonlipschitz optimization problems. SIAM on Optim. 12(3): 656–668

    Article  MATH  Google Scholar 

  44. Ngai H. and Théra M. (2004). Error bounds and Implicit multifunctions in smooth Banach spaces and applications to optimization. Set-Valued Anal. 12(1-2): 195–223

    Article  MathSciNet  MATH  Google Scholar 

  45. Ngai H. and Théra M. (2005). Error bounds for differentiable convex inequality systems in Banach spaces. Math. Program. 104: 465–482

    Article  MathSciNet  MATH  Google Scholar 

  46. Ngai H., Luc D.T. and Théra M. (2002). Extensions of Fréchet ɛ−subdifferential calculus and applications. J. Math. Anal. Appl. 268(1): 266–290

    Article  MathSciNet  MATH  Google Scholar 

  47. Ng K.F. and Zheng X.Y. (2001). Error bound for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12: 1–17

    Article  MathSciNet  MATH  Google Scholar 

  48. Ng K.F. and Zheng X.Y. (2000). Global error bounds with fractional exponents. Math. Prog. Ser. B 88: 357–370

    Article  MathSciNet  MATH  Google Scholar 

  49. Pang J.S. (1997). Error bounds in Mathematical programming. Math. Program., Ser. B 79: 299–232

    Google Scholar 

  50. Phelps, R.R.: Convex functions, Monotone operators and Differentiablility, (2nd edn), Lecture Notes in Math., 1364, Springer, Berlin (1993)

  51. Rockafellar R.T. (1970). Convex Analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  52. Robinson S.M. (1975). An application of error bound for convex programming in a linear space. SIAM J. Control. Optim. 13: 271–273

    Article  MATH  Google Scholar 

  53. Tiba, D., Zălinescu, C.: On the Necessity of some Constraint Qualification Conditions in Convex Programming. J. Convex Analysis, 95–110 (2004)

  54. Thibault L. (1991). On subdifferential of optimal valued functions. SIAM J. Control. Optim. 29: 1019–1036

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang T. and Pang J.S. (1994). Global error bound for convex quadratic inequality systems. Optimization 31: 1–12

    Article  MathSciNet  MATH  Google Scholar 

  56. Wu Z. and Ye J. (2002). On error bounds for lower semicontinuous functions. Mat. Program. 92: 301–314

    Article  MathSciNet  MATH  Google Scholar 

  57. Ye Y. (2000). Multiplier rules under mixed assumptions of differentiability and Lipschitz continuity. SIAM J. Control Optim. 39(5): 1441–1460

    Article  MathSciNet  Google Scholar 

  58. Zheng X.Y. and Ng K.F. (2003). Metric regularity and constraint qualifications for convex inequalities on Banach spaces. SIAM J. Optim. 14(3): 757–772

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Théra.

Additional information

Dedicated to Alfred Auslender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Ngai, H., Théra, M. Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math. Program. 116, 397–427 (2009). https://doi.org/10.1007/s10107-007-0121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0121-9

Keywords

Mathematics Subject Classification (2000)

Navigation