Skip to main content
Log in

Subdifferential characterization of approximate convexity: the lower semicontinuous case

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

It is known that a locally Lipschitz function is approximately convex if, and only if, its Clarke subdifferential is a submonotone operator. The main object of this work is to extend the above characterization to the class of lower semicontinuous functions. To this end, we establish a new approximate mean value inequality involving three points. We also show that an analogue of the Rockafellar maximal monotonicity theorem holds for this class of functions and we discuss the case of arbitrary subdifferentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aussel D., Corvellec J.-N. and Lassonde M. (1995). Mean value property and subdifferential criteria for lower semicontinuous functions. Trans. Am. Math. Soc. 347: 4147–4161

    Article  MATH  MathSciNet  Google Scholar 

  2. Borwein, J., Zhu, Q.J.: Techniques of Variational Analysis. CMS Books in Mathematics (2005)

  3. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983). Reprinted as vol. 5 of the series Classics in Applied Mathematics, SIAM, Philadelphia (1990)

  4. Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R. (1998) Nonsmooth analysis and control theory. Graduate Texts in Mathematics, vol. 178. Springer, New York

    Google Scholar 

  5. Correa R., Jofré A. and Thibault L. (1992). Characterization of lower semicontinuous convex functions. Proc. Am. Math. Soc. 116: 67–72

    Article  MATH  Google Scholar 

  6. Correa R., Jofré A. and Thibault L. (1994). Subdifferential monotonicity as characterization of convex functions. Numer. Funct. Anal. Optim. 15: 531–535

    Article  MATH  MathSciNet  Google Scholar 

  7. Daniilidis A. and Georgiev P. (2004). Approximate convexity and submonotonicity. J. Math. Anal. Appl. 291: 292–301

    Article  MATH  MathSciNet  Google Scholar 

  8. Daniilidis A., Georgiev P. and Penot J.-P. (2003). Integration of multivalued operators and cyclic submonotonicity. Trans. Am. Math. Soc. 355: 177–195

    Article  MATH  MathSciNet  Google Scholar 

  9. Ekeland I. (1974). On the variational principle. J. Math. Anal. Appl. 47: 324–353

    Article  MATH  MathSciNet  Google Scholar 

  10. Georgiev P. (1997). Submonotone mappings in banach spaces and applications. Set Valued Anal. 5: 1–35

    Article  MATH  MathSciNet  Google Scholar 

  11. Janin R. (1982). Sur des multiapplications qui sont des gradients généralisés. C. R. Acad. Sci. Paris 294: 117–119

    MathSciNet  Google Scholar 

  12. Jules F. (2003). Sur la somme de sous-différentiels de fonctions semi-continues inférieurement. Diss. Math. 423: 1–62

    Article  MATH  MathSciNet  Google Scholar 

  13. Lassonde M. (2001). First-order rules for nonsmooth constrained optimization. Nonlinear Anal. 44: 1031–1056

    Article  MATH  MathSciNet  Google Scholar 

  14. Ngai H.V., Penot, J.P. (2007) Nonlinear Anal. 66, 547–564

    Article  MATH  MathSciNet  Google Scholar 

  15. Ngai H.V., Luc D.T. and Théra M. (2000). Approximate convex functions. J. Nonlinear Convex Anal. 1: 155–176

    MATH  MathSciNet  Google Scholar 

  16. Rockafellar R.T. (1970). On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33: 209–216

    MATH  MathSciNet  Google Scholar 

  17. Rockafellar R.T. (1979). Directionally Lipschitzian functions and subdifferential calculus. Proc. Lond. Math. Soc. 39: 331–355

    Article  MATH  MathSciNet  Google Scholar 

  18. Simons S. (1991). The least slope of a convex function and the maximal monotonicity of its subdifferential. J. Optim. Theory Appl. 71: 127–136

    Article  MATH  MathSciNet  Google Scholar 

  19. Spingarn J.E. (1981). Submonotone subdifferentials of Lipschitz functions. Trans. Am. Math. Soc. 264: 77–89

    Article  MATH  MathSciNet  Google Scholar 

  20. Thibault L. and Zagrodny D. (1995). Integration of subdifferentials of lower semicontinuous functions. J. Math. Anal. Appl. 189: 33–58

    Article  MATH  MathSciNet  Google Scholar 

  21. Zagrodny D. (1988). Approximate mean value theorem for upper subderivatives. Nonlinear Anal. 12: 1413–1428

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lassonde.

Additional information

Dedicated to Alfred Auslender on the occasion of his 65th birthday.

The research of A. Daniilidis has been supported by the Grant MTM2005-08572-C03-03.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniilidis, A., Jules, F. & Lassonde, M. Subdifferential characterization of approximate convexity: the lower semicontinuous case. Math. Program. 116, 115–127 (2009). https://doi.org/10.1007/s10107-007-0127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0127-3

Keywords

Mathematics Subject Classification (2000)