Skip to main content
Log in

A local convergence property of primal-dual methods for nonlinear programming

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We prove a new local convergence property of some primal-dual methods for solving nonlinear optimization problems. We consider a standard interior point approach, for which the complementarity conditions of the original primal-dual system are perturbed by a parameter driven to zero during the iterations. The sequence of iterates is generated by a linearization of the perturbed system and by applying the fraction to the boundary rule to maintain strict feasibility of the iterates with respect to the nonnegativity constraints. The analysis of the rate of convergence is carried out by considering an arbitrary sequence of perturbation parameters converging to zero. We first show that, once an iterate belongs to a neighbourhood of convergence of the Newton method applied to the original system, then the whole sequence of iterates converges to the solution. In addition, if the perturbation parameters converge to zero with a rate of convergence at most superlinear, then the sequence of iterates becomes asymptotically tangent to the central trajectory in a natural way. We give an example showing that this property can be false when the perturbation parameter goes to zero quadratically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, P., Benoist, J., Orban, D.: Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming. Comput. Optim. Appl. (2007)(to appear)

  2. Byrd R.H., Liu G. and Nocedal J.   (1997). On the local behaviour of an interior point method for nonlinear programming. In: Griffiths, D.F., Higham, D.J., and Watson, G.A. (eds) Numerical Analysis 1997., pp 37–56. Addison-Welsey, Harlow

    Google Scholar 

  3. Coleman T.F. and Li Y. (1994). On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math. Prog. 67: 189–224

    Article  MathSciNet  Google Scholar 

  4. Dussault J.P. (1995). Numerical stability and efficiency of penalty algorithms. SIAM J. Numer. Anal. 32: 296–317

    Article  MathSciNet  MATH  Google Scholar 

  5. Dussault J.P. and Elafia A. (2001). On the superlinear convergence order of the logarithmic barrier algorithm. Comput. Optim. Appl. 19: 31–53

    Article  MathSciNet  MATH  Google Scholar 

  6. El-Bakry A.S., Tapia R.A., Tsuchiya T. and Zhang Y. (1996). On the formulation and theory of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl. 89: 507–541

    Article  MathSciNet  MATH  Google Scholar 

  7. Fiacco A.V. and McCormick G.P. (1968). Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York

    MATH  Google Scholar 

  8. Gay D.M., Overton M.L. and Wright M.H.   (1998). A primal-dual interior method for nonconvex nonlinear programming. In: Yuan, Y (eds) Advances in Nonlinear Programming (Beijing, 1996)., pp 31–56. Kluwer, Dordrecht

    Google Scholar 

  9. Gould N.I.M., Orban D., Sartenaer A. and Toint P.L. (2001). Superlinear convergence of primal-dual interior point algorithms for nonlinear programming. SIAM J. Optim. 11: 974–1002

    Article  MathSciNet  MATH  Google Scholar 

  10. Gould N.I.M., Orban D., Sartenaer A. and Toint P.L. (2002). Componentwise fast convergence in the solution of full-rank systems of nonlinear equations. Math. Prog. 92: 481–508

    Article  MathSciNet  MATH  Google Scholar 

  11. Heinkenschloss M., Ulbrich M. and Ulbrich S. (1999). Superlinear and quadratic convergence of affine- scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption. Math. Prog. 86: 615–635

    Article  MathSciNet  MATH  Google Scholar 

  12. Martinez H.J., Parada Z. and Tapia R.A. (1995). On the characterization of Q-superlinear convergence of quasi-Newton interior-point methods for nonlinear programming. Bol. Soc. Mat. Mexicana 1: 137–148

    MathSciNet  MATH  Google Scholar 

  13. Nocedal, J., Wächter, A., Waltz, R.A.: Adaptive barrier strategies for nonlinear interior methods. Technical Report, Northwestern Univeristy, IL, USA (2005)

  14. Tits A.L., Wächter A., Bakhtiari S., Urban T.J. and Lawrence C.T. (2003). A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties. SIAM J. Optim. 14: 173–199

    Article  MathSciNet  MATH  Google Scholar 

  15. Ulbrich M., Ulbrich S. and Vicente L.N. (2004). A globally convergent primal-dual interior-point filter method for nonlinear programming. Math. Prog. 100: 379–410

    Article  MathSciNet  MATH  Google Scholar 

  16. Vanderbei R.J. and Shanno D.F. (1999). An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13: 231–252

    Article  MathSciNet  MATH  Google Scholar 

  17. Vicente L.N. (2000). Local convergence of the affine-scaling interior-point algorithm for nonlinear programming. Comput. Optim. Appl. 17: 23–35

    Article  MathSciNet  MATH  Google Scholar 

  18. Vicente L.N. and Wright S.J. (2002). Local convergence of a primal-dual method for degenerate nonlinear programming. Comput. Optim. Appl. 22: 311–328

    Article  MathSciNet  MATH  Google Scholar 

  19. Wächter A. and Biegler L.T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Prog. 106: 25–57

    Article  MATH  Google Scholar 

  20. Waltz R.A., Morales J.L., Nocedal J. and Orban D. (2006). An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Prog. 107: 391–408

    Article  MathSciNet  MATH  Google Scholar 

  21. Yabe H. and Yamashita H. (1997). Q-superlinear convergence of primal-dual interior point quasi-Newton methods for constrained optimization. J. Oper. Res. Soc. Jpn 40: 415–436

    MathSciNet  MATH  Google Scholar 

  22. Yamashita H. and Yabe H. (1996). Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization. Math. Prog. 75: 377–397

    MathSciNet  Google Scholar 

  23. Yamashita H., Yabe H. and Tanabe T. (2005). A globally and superlinearly convergent primal-dual interior point trust region method for large scale constrained optimization. Math. Prog. 102: 111–151

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Armand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armand, P., Benoist, J. A local convergence property of primal-dual methods for nonlinear programming. Math. Program. 115, 199–222 (2008). https://doi.org/10.1007/s10107-007-0136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0136-2

Keywords

Mathematics Subject Classification (2000)