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Conditions d’optimalité nécessaires et suffisantes du
second ordre pour les problémes de commande optimale
avec un controle scalaire et une contrainte sur 1’état

Résumé : Dans cet article, nous étudions un probléme de commande optimale avec un
controle scalaire et une contrainte sur ’état d’ordre quelconque. Les instants de jonctions
sont supposés en nombre fini. Nous obtenons des conditions d’optimalité du second ordre
nécessaires et suffisantes, qui permettent de caractériser la croissance quadratique.

Mots-clés : Commande optimale, conditions d’optimalité du second ordre, contrainte sur
I’état, croissance quadratique, jonctions réguliéres.
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1 Introduction

Considerable efforts have been done in the past for reducing the gap between second-order
necessary or sufficient optimality conditions for optimization problems in Banach spaces,
with so-called cone constraint (i.e. the constraint mapping must be in a convex cone, or more
generally in a convex set). This framework includes many optimal control problems. The
theory of second-order necessary optimality conditions involves a term taking into account
the curvature of the convex set, see Kawasaki [I3], Cominetti [6]. By contrast, second-order
sufficient optimality conditions typically involve no such term; see e.g. Maurer and Zowe [21].
We say that a no-gap condition holds, when the only change between necessary or sufficient
second-order optimality conditions is between a strict and non strict inequality. In that case
it is usually possible to obtain a characterization of the second-order growth condition. There
are essentially two cases when no-gap conditions were obtained: (i) the polyedric framework,
in the case when the Hessian of Lagrangian is a Legendre form, originating in the work by
Haraux [8] and Mignot [22], applied to optimal control problems in e.g. Sokolowski [27] and
Bonnans [I], and the extended polyhedricity framework in [4, Section 3.2.3]; this framework
essentially covers the case of control constraints (and finitely many final state constraints);
and (ii) the second-order regularity framework, introduced in [3] and [2], with applications
to semi definite optimization. We refer to [4] for an overview of these theories. No-gap
second-order conditions were obtained by Zeidan in [28] for mixed control-state constraints,
using conjugate point theory and Ricatti equations.

Generally speaking, problems with non positivity constraints in spaces of continuous
functions do not fit into these frameworks. The expression of the curvature term in this
case was obtained by Kawasaki [I5, [[4] in the one dimensional case, and generalized in
Cominetti and Penot [[f]. However, only sufficient conditions without curvature terms were
known. Two exceptions are a quite specific situation studied in [3] (with applications to
some eigenvalue problems), and the case of finitely many contact points, when the problem
can be reduced locally to finitely many inequality constraints, see e.g. Hettich and Jongen
[a].

Our main result is the following. By a localization argument, we split the curvature
term into a finite number of contributions of boundary arcs and touch points. Using the
theory of junction conditions in Jacobson et al. [12] and Maurer [19], we are able to prove
that, under quite weak assumptions, the contribution of boundary arcs to the curvature
term is zero. For touch points, we use a reduction argument for those that are essential
(i-e. that belong to the support of the multiplier) and we make no hypotheses for the non
essential ones. The only delicate point is to compute the expansion of the minimum value of
a function in 2. Since it is not difficult to state sufficient conditions taking into account
essential reducible touch points, we obtain in this way no-gap conditions, that in addition
characterize quadratic growth in a convenient two-norms setting.

The paper is organized as follows. In section B, we recall the material needed, in both
points of view of abstract optimization and junctions conditions analysis. The main contribu-
tions of the paper are in sections where the no-gap second-order condition is established.
Section Bl states the second-order necessary condition (computation of the curvature term).
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4 F. Bonnans €& A. Hermant

Section @ handles the second-order sufficient condition. In section [, a reduction approach
is presented in order to deal with the non-zero part of the curvature term.

2 Framework

We consider the following optimal control problem with a scalar state constraint and a scalar
control:

T
) min [ #(ute). ()t + o(u(T) )
st )= Sulu(®) ae te[0.T] 5 y(0) =y ©)
oy <0 Vi) ®

The data of the problem are the distributed cost £ : R x R®™ — R, the final cost ¢ : R" — R,
the dynamics f : R x R™ — R", the state constraint g : R®™ — R, the final time 7" > 0, and
the initial condition yo € R™. We make the following assumptions on the data:

(A0) The mappings ¢, ¢, f and g are k-times continuously differentiable (C*) with k > 2
and have locally Lipschitz continuous second-order derivatives, and the dynamics f is
Lipschitz continuous.

(A1) The initial condition satisfies g(yo) < 0.

Throughout the paper, it is assumed that assumption (A0) holds.

2.1 Abstract Optimization
For 1 <p < oo, LP(0,T) denotes the Banach space of functions such that

1/p

T

llullp == (/ |u(t)|pdt> < oo for p <oo; ||ulle := supess |u(t)] < oo,
0

and W1P(0,T) denotes the Sobolev space of functions having a weak derivative in LP. The
space of continuous functions over [0,7] is denoted by C[0,T], with the norm |z|. =
sup [z (2)!

Denote by U := L°>°(0, T; R) (resp. Y := W1°°(0,T;R™)) the control (resp. state) space.
A trajectory is an element (u,y) € U x ) satisfying the state equation @). Given u € U,
denote by y,, € Y the (unique) solution of @). Under assumption (A0), by the Cauchy-
Lipschitz Theorem, this mapping is well-defined and of class C*. We may write problem
(P) as:

Lnelbr{lJ(u) i Glu) eK 4)

INRIA



No-gap Second-order Optimality Conditions for Optimal Control Problems 5

where J : U — R and G : U — C[0,T] are defined, respectively, by

T
J(u) = / Cu(t) (D)t + ST+ Glu) = glva).

These mappings are C*. Here K = C_[0, T is the set of continuous functions over [0, 77,
with values in R_.

We say that u € U is a (weak) local optimal solution of (@) that satisfies the quadratic
growth condition, if there exists & > 0 and p > 0 such that:

J(@) > J(u) + o || — ul|3 for all @ € Boo(u, p), (5)

where B (u, p) denotes the open ball in L>°(0, T') with center u and radius p. This condition
involves two norms, L°°(0,T) for the neighborhood, and L2(0,T) for the growth condition.

The space of row vectors is denoted by R™*. The space of Radon measures, dual space to
C10,T7, is denoted by M0, T] and identified with functions of bounded variation vanishing
at zero. The cone of nonnegative measures is denoted by M [0,7T] and is equal to K,
the polar cone of K. The duality product over M[0,T] x C[0,T] is denoted by (n,z) =
fOTx(t)dn(t). Adjoint operators (and transpose in R™) are denoted by a star *. Fréchet
derivatives of f, etc. w.r.t. arguments u € R, y € R", are denoted by a subscript, for

instance f,(u,y) = Dy f(u,v), fuu(u,y) = D%, f(u,y), etc.
Define the classical Hamiltonian and Lagrangian functions of problem (P), respectively

H:RxR"xR™ —-Rand L:U x M[0,T] — R by:

H(u,y,p) :==L(w,y) +pf(u,y) 5 Llu,n) = J(u)+ (n,G(u)) . (6)

Denote by BV (0,T) the space of functions of bounded variation. Given u € U and n €
M[0,TY, let the costate p, , be the unique solution in BV (0,T; R™) of:

—dpuy = (fy(u, Yu) +pu,77fy(u= yu))dt + gy(yu)dn ) pu,n(T) = ¢u(yU(T)) (7)

Given v € U, let the linearized state z,, € Y be solution of:

Zuw = fy( yu)zuw + fu(u, yu)v 5 2uw(0) = 0. (8)

The mapping U — Y, v + 2, is the Fréchet derivative of the mapping u — ¥, at point w.
The next lemma gives the expressions of derivatives of Lagrangian, with respect to the
control. For simplicity of notation, we write in the sequel D*H, 4)2(u,y,p)(v,z)* instead

of D(Quhy)1(u7y)H(u7 y,0)((v, 2), (v, 2)).

Lemma 2.1. Let n € M [0,T]. Then u — L(u,n) is of class C? over U, with first and
second derivatives given by, for all v € U (omitting time argument):

T
Dy L{u, n)o = / ot Y pay 0t )
0

RR n° 5837



6 F. Bonnans €& A. Hermant

T
DZUL(U77’])(U7U) = / DQH(uqu(u?yu?pum)(uZu,v)2dt
0 (10)

T
20l ) DTN (D) + [ 2000 00) 20,
0
where H is given by (@), 2., and p,, are solution respectively of (@) and (@).
Proof. Since u — y, is C2, the Cauchy-Lipschitz Theorem ensures the existence of the

second-order expansion of the state

1
Yut+v = Yu + Zu,v + §Zu,v'u +o (”U”io) . (11)

It is easily seen, substituting () into the state equation and keeping the terms of second-
order, that z,, ., is solution of:

2%1)17 = fy(ua yu)zu,vv + D2f(u,y)2 (u7 yu)(% Zu,v)2 ; Zu,vv (O) =0. (12)

Using costate equation () and linearized state equations (B) and (), we get easily (omitting
arguments):

T
Duwn)o = = [ @z + unundt) + 0y 00T 200T)
0
T
+/ H,vdt;
T 0
DiuL(u,n)(U,v) = /DQH(u,y)z(vﬁzuxvydt'i‘Zu,v(T)*¢yy(yu(T))Zu,v(T)
0

T
+ / Zz,vgyy(QU)Zu7vd"7
T 0
- / (dpu,nzu,'uv +pu,n2}u,vudt) + d)y (yu(T))Zu,'Uv (T)
0

To obtain (@) and () it suffices, in view of Lemma [A-2 to integrate by parts in the above
expressions p,,, with z,, and with z, ., respectively. O

First Order Necessary Condition. Forx € K = C_(0,T), define the first order contact
set I(z) := {t € [0,T] ; z(t) = 0}. The expression of the tangent and normal cones (in the
sense of convex analysis) to K at point z, respectively Tk (x) and Ng(z), are well-known
(see e.g. []) and given, for € K (these sets being empty if z ¢ K), by:

Tk(x) = {heC[0,T]; h(t) <0on I(z)},

Ni(x) = {n€My[0,T]; supp(n) C I(z)}.
Here by supp(n) we denote the support of n € M[0,T], i.e. the complement in [0, 7] of the

largest open set W C [0,T] that satisfies: fOT z(t)dn(t) = 0, for all functions x € C[0,T]
vanishing on [0, 7]\ W.

INRIA



No-gap Second-order Optimality Conditions for Optimal Control Problems 7

Let w € U. We say that n € M[0,T] is a Lagrange multiplier associated with w if the
following first order necessary optimality condition holds:

D,L(u,n) = DJ(u)+ DG(u)'n =0 ; ne Nx(Glu)). (13)

The set of Lagrange multipliers associated with w is denoted by A(u).
Robinson’s constraint qualification (see [24}, 27]) for problem (@) is as follows:

Je >0, eBc C G(u) + DG(u)U — K. (14)

Here B¢ denotes the unit (open) ball of C[0,T].

The next theorem is well-known (see e.g. [4], Lemma 2.98 and Theorem 3.9). Note
that for v € U, we have DG(u)v = gy(Yu)zu,v, i-6., (DG(u)v)(t) = gy(yu (t))zu,0(t), for all
te€0,T)].

Theorem 2.1. (i) A characterization of (IJ) is:
There exists v € U;  gy(yu(t))zuw(t) <0, for all t € I(g(yu)). (15)

(ii) Let u be a local solution of [f)), satisfying (LA). Then with u is associated a non empty
and bounded set of Lagrange multipliers.

Second Order Analysis. Let the critical cone be defined by:
C(u) ={veld; DG(u)v € Tg(G(u)) ; DJ(u)v < 0}. (16)
For h € Tk (x), the second-order contact set is defined by:
I*(z,h) = {t € I(z) ; h(t) = 0}. (17)

If @) holds, then D.J(u)v > 0 for all v such that DG (u)v € Tk (G(u)) and DJ(u)v = 0 iff
n L DG(u)v. Since n > 0 has support in I(G(u)), and DG(u)v < 0 on I(G(u)), we obtain
the following (classical) statement:

Lemma 2.2. Let (u,n) satisfy the first order necessary condition (I3). Then:
C(u) = {v € U; DG(u)v € Tk (G(u)); supp(n) C I*(G(u), DG(u)v)}. (18)

The inner and outer second-order tangent sets, respectively T12<’i(:1:, h) and TZ(z,h), are
defined by:

Ty (x,h) = {we Cl0,T); dist(z +eh + se%w, K) = o(e?), € > 0},
TE(z,h) = {weC[0,T]; 3e, | 0,dist(z + enh + 22w, K) = o(c2)}.

We recall the characterization of the inner second-order tangent set Tf(’i(:zr, h) due to Kawa-
saki |15}, [T4] (see also [7]): if x € K and h € Tk (z), then

Ti’i(,@, h)={we C[0,T]; w(t) < ¢ n(t)on [0,T]}, (19)

RR n° 5837



8 F. Bonnans €& A. Hermant

where ¢, , : [0,T] — R is given by:

0 if t € (int I(z)) N I%(z, h)
Sa.n(t) = liminf M if t € 0I(x) N I%(x, h) (20)
’ t—t;z(t)<0  2x(t) ’
+o0 otherwise.

Here h(t)+ := max{h(t),0}, and int S and 05 denote respectively the interior and boundary
of set S. Set T (x,h) := dI(x) N I%*(z,h). We have ¢, (1) <0 for 7 € 7T (z,h) and it is not
difficult to check that t — ¢, j(t) is lower semi-continuous. Consequently, Tx"(z,h) # 0
iff ¢; n(t) > —oo for all t. In that case, ¢, p is the upper limit of a increasing sequence of
continuous functions (,). Given n € M4 [0,T], we may define (see e.g. [17]):

T T
/ Sz, n(t)dn(t) == sup {/ s(t)dn(t); ¢ < %,h} € RU{+o0}.
0 0

Then:
T

o (0, TZ (z, b)) = / Con(B)d(2), (21)

0

where o(n, S) = sup,,cg (7, w) denotes the support function of the set S. If the support of
n satisfies supp(n) C I*(z, h), then

o(n, T2 (x, h)) < 0. (22)
A second-order necessary condition due to Kawasaki [13] is:

Theorem 2.2. Let u be a local optimal solution of #l) satisfying (IJ). Then, for all v €
C(u), the following holds:

sup { D2, L(u,1)(0,0) - o(n, TR (G(w), DG(u)v) } = 0. (23)
neEA(w)

Remark 2.1. The above second-order necessary condition was improved by Cominetti in
[6], by stating that for all convex set S, , C T%(G(u), DG(u)v),

sup {DZuL(um)(vm) —o(n, Suw) } > 0. (24)
nEA(u)

Th. E2is obtained for the particular choice of S, = T5"(G(u), DG(u)v). For the problem
considered in the present paper, we gain sufficient information from (23] (see Proposition

B).

INRIA
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2.2 Junction Condition Analysis

We first recall some classical definitions. A boundary (resp. interior) arc is a maximal
interval of positive measure Z C [0, T such that g(y(t)) = 0 (resp. g(y(t)) < 0) for all t € 7.
If [Ten, Tex] i @ boundary arc, 7., and 7., are called entry and ezit point, respectively.
Entry and exit points are said to be regular if they are endpoint of an interior arc. A touch
point 7 in (0,7 is an isolated contact point (endpoint of two interior arcs). Entry, exit and
touch points are called junctions points (or times). We say that the junctions are regular,
when the junctions points are regular. In this paper, only the case of finitely many regular
junctions is dealt with.

The first-order time derivative of the state constraint when y satisfies the state equation
@), i-e., gM(u,y) = Lg(y(t)) = g,(v) f(u,y), is denoted by g(!)(y) if the function R x R —

7
R; (u,y) — gy(y)f(u,y) does not depend on u (that is, the function (u,y) — gqsl)(u,y) is

identically zero). We may define similarly ¢, ..., ¢@ if g, f are 09 and if ¢¢) = 0, for all

j = 17"'7q_ 17 and we have g(J)(u7y) = gé]_l)(y)f(u7y)7 for j = 1""7q'

Let ¢ > 1 be the smallest number of times derivations of the state constraint, so that a
dependence w.r.t. u appears. If ¢ is finite, we say that ¢ is the order of the state constraint

(see e.g. [A]).

Let w € U be a solution of the first order necessary condition (3, with Lagrange
multiplier  and costate p,, ,, solution of (@). Since n and p,, ,, are of bounded variation, they
have at most countably many discontinuity times, and are everywhere on [0, T left and right
continuous. We denote by [1(7)] = n(r) — n(7~) where n(7*) = lim,_,,+ n(t) the jump
discontinuity of n at time 7 € [0, T]. We make the following assumptions:

(A2) The Hamiltonian is strongly convex w.r.t. the control variable, uniformly w.r.t. ¢t €
[0,T:
Iv>0, Huu(tyu(t),puy,t5)) >y VaeR, vt €[0,T]. (25)

(A3) (Constraint regularity) The data of the problem are C?%, i.e. k > 2¢ in (A0), the
state constraint is of order ¢ and the condition below holds:

38>0, 1959 (@, 5 (1)) > B, Vi e R, Vt € [0,T]. (26)

(A4) The trajectory (u,y,) has a finite set of junctions times, that will be denoted by
T =T, UT, UTy,, with 7oy, Te, and Ty, the disjoint (and possibly empty) subsets of
respectively regular entry, exit and touch points, and we suppose that ¢(y.(T)) < 0.

Remark 2.2. An assumption weaker than (A2), that is enough for the sufficient conditions
in section H and B, is

(A2’) (strengthened Legendre-Clebsch condition)

Jv >0, Hoy(u(t), yu(t), pun(t)) > v a.e. t€[0,7]. (27)

RR n° 5837



10 F. Bonnans €& A. Hermant

A touch point 7 € Ty, is said to be essential, if the Lagrange multiplier 7 satisfies
[n(7)] > 0. The set of essential touch points of the trajectory (u,y,) will be denoted by
T

The above hypotheses imply the continuity of the control variable and of some of its
derivatives at junction points. The next proposition is due to Jacobson et al. [I2]. Its proof
was later clarified in Maurer [19].

Proposition 2.1. Let u € U satisfying (I3) with Lagrange multiplier n and assume that
(A2)-(A4) hold. Then:

(i) The control u is continuous over [0,T] (in particular at junctions points 7 € T ) and C1?
on [0,T)\ 7. The multiplier n is continuously differentiable on [0,T]\ 7.

(i) If 7 € Ten, U Tey is a regular entry or exit point, then: (a) if ¢ is odd, n and the ¢ — 1
first time derivatives of u are continuous at 7; (b) if q is even, the ¢ — 2 first time
derivatives of u are continuous at 7.

(i) If 7 € Ty, 4s a touch point, then: (a) the g — 2 first derivatives of u are continuous at
7; (b) if ¢ =1, then n and @ are also continuous at 7 (that is, if ¢ = 1, then (u,y,)
does not have essential touch point).

Remark 2.3. Under the assumptions of Prop. Bl we have the following decomposition:
dn(t) = no(t)dt + >, ;v-0-(t) where 0, denotes the Dirac measure at time 7, the density

no € L1(0,T) is equal to % almost everywhere and v, := [(7)] > 0. We have v, = 0if ¢ is
odd and 7 is a regular entry/exit point, and if ¢ = 1 and 7 is a touch point.

We end this section by a result on constraint qualification and uniqueness of the multi-
plier. For this we need the expression of the time derivatives of DG(u)v.

Lemma 2.3. Assume that f,g are C? and that gfj) =0,forj=1,...,9q—1. Then: (i) For
all v € U, the following relations hold:

47

Egy(yu)zuw = gl(}j)(u, Yu)Zu,v, j=1,...,q—1, (28)
d? (a) (a)
ﬁgy (yu)zu,'u = qu (u7 yu)zu,'u + guq (ua yu)v (29)

(i) If in addition, (Z8) is satisfied, then DG(u) is an isomorphism between L*°(0,T) and
the space W defined by:

W= {p e W (0,T); ¢V(0) =03 j=0,....¢~1}. (30)
Proof. (i) By @), we have:

d
Egy (yu)zu,v = Gyy (yU)f(u7 yu)zu,v + gu(yu)fu (u, yu)zu,v + gu(yu)fu (Ua yu)U
(1)

= gél)(uvyu)zu,v‘i‘gu (u, Yyu)v.

INRIA



No-gap Second-order Optimality Conditions for Optimal Control Problems 11

Since g&j) =0 for j =1to g— 1, we obtain by induction that ddejgy (Yu) 2uw = gé‘j)(u, Yu) Zuw

is independent on v, and that the derivative of order ¢ has the expression in [29).
(ii) If in addition (Z6) is satisfied, it is easily seen by [9) that for all ¢ € W, there exists
a unique v € Y such that g,(y,)zuw = . The conclusion follows from the open mapping
theorem.

O

Proposition 2.2. Assume that (A1) holds, and let u € U satisfy (A3). Then: (i) Robinson’s
constraint qualification (IJ) holds; (i) if A(u) # 0, the Lagrange multiplier n associated with
U 18 unique.

Proof. 1t is obvious by Lemma Z3|(ii) and Lemma Z1Li) that () holds iff (A1) does. This
proves (i). Assume that ny,72 € A(u) and set u :=ns — 1 € M[0,T]. Since DG(u)*p = 0,
it follows that fOT e(t)du(t) = 0, for all ¢ € W. Since g(yo) < 0, we have supp(u) C [2¢,T]
for some € > 0. Taking the restriction to [e, T'] of functions in DG (u)Uf, we obtain the whole
space W2 (g, T). By density of the latter in C[e, T| we deduce that for all ¢ € C[0,T],

fOT o(t)du(t) = fET (t)du(t) = 0. Hence du = 0, which achieves the proof of (ii). O

3 Second-order Necessary Conditions

3.1 Basic Second-order Necessary Conditions

Let u € U satisfy assumptions (A2)-(A4) and n € A(u). We make the following assumptions.
Let ¢ :=2q—1if ¢ is odd and ¢ := 2q — 2 if ¢ is even.

(A5) (Non Tangentiality Condition)

(i) For all entry time 7., € Z¢,, and all exit time 7., € Tey:

_ )it Jé+1 . 0. da+1 . . .
()T Ol s, <05 9oy <0 (3D)

(ii) For all essential touch point 7, € 7,%°%:

d2

IO h=r., <0. (32

(A6) (Strict Complementarity on boundary arcs): int I(G(u)) C supp(n).

Remark 3.1. 1) By Proposition Il the expressions appearing in assumption (A5)(i)-
(ii) are well-defined, and § + 1 is the smallest possible order for which the corresponding
derivative of ¢(y, ) may be nonzero at an entry or exit point. Note that ¢ = ¢ for ¢ = 1, 2.
2) Only the assumption (A6’) below, weaker than (A6), is used in necessary condition of
Theorem ] in order to ensure that the second-order tangent set T (G(u), DG(u)v) is not
empty, for all v € C(u):

RR n° 5837



12 F. Bonnans €& A. Hermant

(A6%) (Strict Complementarity near entry/ezit of boundary arcs): For all entry point 7., €
Tern and exit point 7., € 7¢;, there exists € > 0 such that:

(Tena Ten + 5) - SUPP(T)) 5 (Tem — &, Tem) - Supp(ﬁ)- (33)

Note that we do not assume strict complementarity at touch points.

Theorem 3.1. Assume that (A1) holds. Let u € U be an optimal solution of (@), with its

Lagrange multiplier 0, satisfying (A2)-(A5) and (A6°). Let T,°°° denote the (finite) set of

essential touch points of the trajectory (u,y.) and v, = [n(7)] > 0, for 7 € T,5*°. Then, for
allv e C(u):

(1) 2

D?WL(U, n)(v’ ’U) _ Z v, (gy (yu(T))Zu,'U(T))

2
Lot aE9Wu(t))li=r

(34)

Corollary 3.1. Under the assumptions of Theorem [, if the trajectory (u,y,) has no
essential touch point (in particular, if the state constraint is of first order ¢ = 1), then
D2, L(u,n)(v,v) >0, for all v € C(u).

In the sequel, we denote I*(G(u), DG(u)v) by IZ . For all v € C(u), by (), we have
7555 C (Tyo N 17,)- Let us denote the subset of critical directions that “avoid” non essential
touch point (i.e., such that g(y,(7))zu,.(7) <0, for all 7 € Ty, \ 7,5°°) by:

Co(u) :={v e Cu); ToNI,, =T}

The first step of the proof of Theorem Bl consists in computing the sigma-term for the
critical directions in Cp(u).

Proposition 3.1. Let v € Co(u). Under the assumptions of Theorem [Zdl, we have that

(95" (yu (7)) 2u0(7))?
o(n, Tz (G(u), DG(u)v)) = vy = : .
(n, T (G(u), DG (u)v)) ; ) e

(35)

Proof. The proof is divided into 3 steps. We first analyse the contribution of entry/exit
points, then the one of touch points, and finally conclude.

Remind that by (20), only the points in 9I(G(u)) N I7, have a contribution to the
sigma term. Note that 0I(G(u)) = T. Set Suw ‘= Sy(y.).g, (yu)zu.e = SG(u),DG(u)o and let
TeTNI;,. By @), we have:

oolr) = timing D@z OF)

36
t—7; g(yu(t))<0 29(yu(t)) (36)

1) (Entry/exit point). Assume that 7 € 7.,U7Z.,;. According to Prop. i), time
derivatives of the control at regular entry/exit points are continuous until order g — 2 if ¢ is
even, and ¢ — 1 if ¢ is odd. Consequently, by definition of the order of the state constraint,
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the times derivatives of g(y,) are continuous at 7 until order 2¢ — 2 is ¢ is even, and 2q — 1
if ¢ is odd. Hence they all vanish at entry/exit time 7 of a boundary arc. It follows that for
t at neighborhood of 7 on the interior arc side, a Taylor expansion gives, by definition of §:

G+1 — )i+t
9(yu(t)) = ;tq+1g(yu)|t Ti(t(qT)l)!

+o((t — 7)), (37)

where, for the sake of simplicity, we denote by 7+ either 7~ if 7 € 7., or 77 if 7 € To,.

Combining Lemma and (A6’), we see that for all v € C(u), the function (of time)
9y(Yu)2zu,» vanishes just after entering or before leaving a boundary arc on a small interval
[7, 7 £ €], and so do its first ¢ — 1 time derivatives since the latter are continuous by Lemma
E3(i). The g-th derivative of g, (yu)zu,» being a bounded function by @), we have, on the
interior arc side:

|9y (yu () 20,0 (1) < CJt — 7. (38)

If ¢ is odd, combining ([BQ) with § = 2¢ — 1 and [BX) and by tangentiality assumption

(A5)(i), we deduce from Bf) that:

3 02(t — 7')2‘1
§u,v(7') > hIni 5 o n > oo
t=r® g 9 (Yu) l=r= o T+ o((t — 7)29)
I g is even, () with § = 2 —2, (B) and (A5)() in @ give:
2 t — 2q
Suw(t) > lim C=( T,) .

= A 9yt U + o((t = 7)20 )
Since g, (7) < 0 by ([20) at an entry or exit point, it follows that (when ¢ is even) ¢, ,(7) = 0.
2) (Touch point). Assume now that v € T;, N 17 ,. If that case happens, since v € Co(u),
our hypotheses imply that 7 is an essential touch point satisfying (2)), and hence, that
q > 2. Since g(y.) has a isolated local maximum at 7, g(y,) and ¢(!)(y,) vanish at 7 while
L9 = ¢g@ (u,y,) is nonpositive and continuous at T since u is continuous by Prop. EZIKi).
We thus have:

d t—1)2
00(0) = S g0 w)ler T ot - ), (39)
Since 7 € I7 ,,, we also have g, (y(7))zu,v(7) = 0. The function g, (y.)zy,. being C* (since

q > 2) with almost everywhere a bounded second derivative, we get by (E8), taking the
nonnegative part:

(99 (¥ () zuw )+ = (94 Gu()) 200 (T)(E = 7))+ + ot = 7). (40)

From B9), @) and (A5)(ii), (gu(Yu)zu,w)3 /9(yu) is left-and right continuous when ¢ — 7.
Therefore, taking the lim inf when ¢ — 7 comes to take the min of both limits when t — 7
and t — 7, thus we obtain:

U 721G ) ECo ) SN NN € i 7
9P (). yu(r) 9@ (u(r), yu(7))

Su,v (T) =
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3) (Conclusion). For all 7 € T NI, we showed that ¢, (1) > —oo. Therefore we may
apply ). Set Iy := int I(G(u)). By ([8), we have supp(n) C I2, and in view of remark

B3 we may write that:

a(n, T (G(u), DG(u)v) = / Sup(®mo(B)dt+ D" vrgu(7) (42)
o TETNI?

u,v

where 19 € L'(Io) and v, = [5(7)]. By @), ¢u,, vanishes on Iy N 17, and thus on Io N
supp(no). Hence, ffo Sup(t)no(t)dt = 0. If 7 € T, U Tey, we have, if ¢ is odd, v, = 0 by
Prop. EZ1Kii)(a) and we showed that ¢, ,(7) > —o0. If ¢ is even, we showed in point 1) that
Su,w(7) =0 (and we have v; < +00). In both cases, we deduce that v, ., (7) = 0.

It remains only in ([@2), when ¢ > 2, the contribution of finitely many touch points 7 in

Tio N1I7, = T with G, ,(7) given by (). Hence (B3) follows. O

Proof of Theorem [Zl Combining Theorem 222 and Propositions 222 and Bl we obtain that
(B4 holds, for all v € Cy(u). Since the left-hand-side of (B4 is a continuous quadratic form,
it remains nonnegative on the closure of Cy(u). We end the proof by checking that the latter
is equal to C'(u), the cone of critical directions.

Since C'(u) is closed and contains Cy(u), we have of course Cy(u) C C(u). We prove
the converse relation. Let vy € C(u). We remind that v € C(u) iff gy(yu)2zu < 0 on
I(9(yu)) and gy (Yu)zu,0 = 0 on the support of the Lagrange multiplier . Let p: R — R
be a function of class C*° having support on [—1, 1], and positive on (—1,1). For £ > 0, set
pe(t) := €9 p(t/e), thus we have p. — 0in W°, By Lemma (i), for ¢ > 0 small enough,
there exists a unique v. € L>(0,T) such that g(yu)zuv. = 9(¥u)zuwe — Lper,,\7e0e Pe(t —
7) € W%>(0,T). Then we have g,(yu)zuv. = 9y(Yu)2uv, Outside (7 — e, 7 + ¢), for all non
essential touch point 7, g, (Y (7))zu,v. (7) < 0 for such 7, and hence, the touch points being
isolated, for £ > 0 small enough, v. € Cy(u). Since DG(u)ve — DG(u)vg in W, where W
was defined in B0), and DG(u) has a bounded inverse by Lemma EZ33(ii), we have v. — vg
in L>°(0,T) when € | 0. The conclusion follows. O

3.2 Extended Second-order Necessary Conditions

The solution z, , of the linearized state equation @) when v € L?(0,7), is well-defined and
belongs to H'(0,7) C C[0,T]. Thus we may extend continuously D.J(u) and DG(u) over
L?(0,T) (we keep the same notations for the extensions). Since DG(u) : L?(0,T) — C[0, T,
it makes sense to the extend the critical cone C(u) to critical directions in L2, as follows:

Cr2(u) = {v € L*(0,T) \ DG(u)v € Tx(G(u)) ; DJ(u)v = 0}. (43)

The necessary and sufficient second-order conditions involve respectively C'(u) and Cpz2(u)
(see sections M and Bl). Therefore, to obtain the no-gap second-order conditions, we need the
following variant of Theorem Bl
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No-gap Second-order Optimality Conditions for Optimal Control Problems 15

Corollary 3.2. The statements of Theorem [l and Corollary [T still hold replacing as-
sumption (A6’°) by (A6) and C(u) by Crz(u).

Corollary is obtained as a consequence of Th. Bl continuity of the left-hand side of
B4) w.r.t. v € L?, and density of C(u) into Cp2(u) (Lemma B3). To prove the latter, we
first need a general result.

Lemma 3.1. Let ¢ > 1 and a < b € R. Then for all & € H%(a,b) = W9%2(a,b), there
exists a sequence (x,,) of W% (a,b) such that 25’ (a) = 29 (a), 2 (b) = #9)(b) for all
j=0,....¢—1,neN and |z, — g2 — 0.

Proof. Set 2, := (&(a),..., 29V (a))*, & := (&(b),..., 200 D (b))* € R? and @ := 2(9) ¢
L?(a,b). For u € L?(a,b), let z,, € H(a,b) be the solution of:

ng) (t) =u(t) ae. ona,b] ; (xyu(a),... 7.%'1(:171)((1)) =, (44)
For n € N, consider the following problem:
(P) minflu—al3 ; Au=2, ; u€U, (45)

where Uy, := {u € L2(0,T) ; |u(t)] <nae}and A: L2 =R ; u s (2,(b),...,29 D ([®)".
By construction, At = 3. It is readily seen that the mapping L?(a,b) — H9(a,b); u —
solution of (@) is continuous. Since HY(a,b) has a continuous inclusion into C?~t[a, b], it
follows that the linear mapping A is also continuous.

Let us first show that for n large enough, the problems (P,,) are feasible and uniformly
qualified, that is there exist ng € N and §y > 0 such that

Zp + 0o Bre C AUy, C AU, Vn > ng, (46)

with Bgre the unit ball in R?. Indeed, consider e.g. for § € R? the (unique) polynomial
function x5 on of degree 2q — 1 that takes with its ¢ — 1 first derivatives the values Z, and
Zp at a and b. Tt is easily seen that its coefficients are solution of a full-rank linear system
with &, — &, + 0 as right-hand side, hence, taking the sup over (¢,d) € [a,b] X Bra(0,dp) of
the functions us(t) = zgq) (t) that are C*° w.r.t. t and 0 provides an uniform bound ng such
that (E6) holds.

Since Robinson’s constraint qualification holds for n large enough, there exists a (unique)
optimal solution u,, of (P,,) and a normal Lagrange multiplier \,, € R?*, such that (through-
out the proof, (-,-) denotes the scalar product over L?):

0<(up—t+ A"\, v —up) Yv € U,. (47)

Since the feasible set of problem (P,) is increasing for inclusion when n — 400, the cost
function is decreasing, thus ||u, — /|2 is bounded. Hence the sequence (u,,) converges weakly
to some u € L?. We may rewrite @1 as:

ltun — |2 + Ao (@5 — AV) < (up — G0 —3) Yo €U, (48)
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Qualification property (#8) implies that dg|A,| < SUD, cyy,, An (zp—Av), hence, taking the sup
for v € U,,, successively in the right and left hand side of [@8), we deduce that for some con-
stant K (ng) > 0 that depends on ng, we have do|\,| < K(no), for all n > ng. Therefore the
sequence (Ay,) is uniformly bounded. Define now v,, € U,, as v, (t) = max{—n; min{n, 4(¢)}}
a.e. By the Lebesgue dominated convergence Theorem, v,, — 4 in L? and by @R):

lwn —all3 < (up — @0, —4) + A(Av, — &) — 0,

since u, — 4 — @ — 4 weakly in L?, v, — 4 — 0 strongly in L?, A, is bounded and
Av, — At = &, by continuity of A. It follows that ||u, — 4|2 — 0 and the sequence
Xn 1= Ty, satisfies all the required properties, so the proof is completed. O

Lemma 3.2. Let u € U and n € A(u) such that (A3), (A4) and (A6) are satisfied. Then
Cr2(u) is dense into C(u).

Proof. Since (A4) holds, denote by 0 < 71 < ... < 75y < T the junctions times of the
trajectory (u,y,), and set 79 := 0, 741 := T. Let v € Cpr2(u) and set = := DG(u)v. By
Lemma BT applied on intervals |74, 7;41] that are not boundary arcs, there exists a sequence
xn € W2>°(0,T) such that x,, = 0 = = by (A6) on boundary arcs, ng)(m) = 20 (1) for
al j=0,....,—1and k =0,...,N + 1, and 2, — = in H9. By (A3), we may define
v, € L*°(0,T) such that DG(u)v, = x, for all n. It is readily seen that v, € C(u) for all n
and v, — v in L2, which achieves the proof. o

4 Second-order Sufficient Conditions

The second-order sufficient conditions theory classically involves two norms, namely L? and
L, see Ioffe [10, Part III] and Maurer [20].

Assume that X, Z are Banach spaces endowed the norms |[|-||  and |[-|| ;, respectively,
such that Z C X with continuous embedding. Let k € N. We say that r(z) = Oz(||z||%) if
r(z) < C||z||% for some C' > 0 when ||z 7 is small enough. We say that r(z) = oz(||z|/%) if

r(v)/||z||% goes to zero when | z||z goes to zero. In the sequel, || - ||, (resp. || - ||;.,) denotes
the norm of the space LP(0,T) (resp. the Sobolev space WP (0,T)), for 1 < p < oo and
r=1,... < +oo. We write O, and O, for respectively O).,, and Oy.|,..,, and we use

the same convention for o, and o, ,. Similarly, B, and B, , denote open balls in LP and
WP respectively.

We remind that a quadratic form Q(v) on a Hilbert space is a Legendre form (Ioffe and
Tihomirov [I1]), if it is weakly lower semi-continuous (w.l.s.c.) and if v, — v weakly and
Q(v,) — Q(v) strongly imply that v,, — v strongly.

The next theorem gives the second-order sufficient condition in its well-known form (i.e.
without the curvature term).

Theorem 4.1. Let u € U satisfy (I3) with Lagrange multiplier n and assume that (A2’)
holds. If the following second-order sufficient condition is satisfied:

D2 L(u,n)(v,0) >0 Yo & Cr2(u)\ {0} (49)
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then u is a local solution of {@l) satisfying the quadratic growth condition ([4).

Conversely, if (A1)-(A6) hold and if (u,y.) has no essential touch point (in particular,
if the state constraint is of first order ¢ = 1), then the second-order sufficient condition [{9)
is satisfied iff the quadratic growth condition ([A) is satisfied.

The proof of Theorem BTl will be given after a sequence of short lemmas.

Lemma 4.1. Let (u,n) €U x M[0,T] and v € U. The following holds, for all o € [0,1]:

lYutov — yu”oo = OOO(HU”l) (50)
[Putovn —Punlle = Osx(llv]ly) (51)
||Zu+av,v||oo = OOO(||U||1) (52)
|Zutove = Zuollee = Ouolllv]3): (53)

Proof. Set u, := u+owv, and let C denote a positive constant. Since f is Lipschitz continuous
by (A0), D) is an easy consequence of Lemma [AJl Thus, u, and y,, take values in a
compact set of type:

Vs ={(4,9) e RxR"; 3t €0, T], [(& 9) — (u(t),yu(t))| < 0}, (54)

for some 6 > 0. The mappings f, £ and g as well as their first order derivatives are C,
and hence Lipschitz continuous over the compact set V5. Lemma [AJl applied to the costate
equation (), ensures that p,, , also remains uniformly bounded. The derivation of (&)
and (B2) being similar to the one of (&J), we detail only the latter. We have (omitting time
argument):

|Zug,0(t) = Zuo(t)] < ||fy||00|zug,v_zu,v|
+ (1D f(uo, Yu,) — D f(u,yu)]) (Izu0] + [0(E)]) -

Since Df is Lipschitz on V, we have by B) |Df(ue,¥yu,) — Df(u,yu)] < C(|v]|1 + |v]).
Combining with (B2) and the inequality ab < 3(a? + b*), we deduce from the above display
that

1Zusw(t) = Zup®)] < [[fyllool2us,0 — 2uw| +C (”UH% + |U(t)|2) .
We conclude with Lemma [A] and the inequality |[v||; < v/T||v]|2. O

Lemma 4.2. Let (u,n) €U x M[0,T] and v € U. Then:
1
L(u+v,m) = L(u,n) + DuL(w, n)v + 5 D, L(w,n) (v, 0) + 7(v) (55)

with 1(v) = Ouo(|[v]13). In particular, r(v) = o (|[v]|2).
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Proof of Lemma {3 For o € [0,1], set again u, := u+ ov and p,, := pu, n. By Lemma
ET

r(v)

1
[/0 (1-o0) (DiuL(u +ov,m) — DZuL(um)) do} (v,v) (56)

/01 /OTAl(t)dth-i-/ol /OT AQ(t)dn(t)dU-‘r‘/olA3da,

with (omitting time argument)

Al(t) = D2H(u,y)2 (anyu(,7pu(,)(U7Zud,v)2 - D2H(u,y)2 (uayuupu)(u7zu,v)2
Ao(t) = Zajc,,vgyy (yug)zug,v - Zz,vgyy (yu)zuv
As = Zug,v(T)*¢yy (Yu, (T))Zug,v (T) - Zu,v(T)*Qbyy (yu(T))Zuv(T)

Under assumption (A0), second-order derivatives g,,, etc. are Lipschitz continuous over a
compact set Vj defined in (B4) for some § > 0. By Lemma Bl we get, for some constant
C>0:

As (1)

IN

C (lyun - yu||2ua,v|2 + (|Zua,v| + |ZU7U|)|ZUU;U - Zu,vl)
3 2 3
Oso([loll7 + llvlly [[v]12) < Oss([[v]]3),

IN

since by the Cauchy-Schwarz and Holder inequalities, that give respectively

2 3/2 1/2
5 < S22 5 |, < T3

5 Il ; [-ll3 5

we have ||-|2 |||, < T ||||§ Since the measure dn is bounded and the O, are uniform w.r.t.

time, we obtain fOT Aq(t)dn(t) = OOO(||U||§) The same upper bound holds for As(7T'). As
for A1(t), we have in the same way, by Lemma ELT}

Aq(t) < C(lyun - yU| + |pua _pU| + 0|”|)(|2ua,v|2 + |U|2)
+ C|2uy 0| + [2uw] + [V)]2uy 0 = 2u0l
3 2
< C(lvlly + [0llf @) + [[olly [o@) P + [o(£)]?).

Hence, fOT Aq(t)dt = (900(||v||§) Finally, since the Oy do not depend on ¢ € [0,1], we
obtain after integration over [0,1] that r(v) = Ou(|Jv]3). Since ||-|3 < |||l ]]l., it follows
that r(v) = oo (||0]3)- O
Lemma 4.3. Let (u,n) € U x M1[0,T] satisfy (A2’). Then the quadratic form U — R,

v+ D2 L(u,n)(v,v) has a unique extension to a continuous quadratic form over L?(0,T),
and the latter is a Legendre form.
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Proof. Since L* is a dense subset of L? and v — D2 L(u,n)(v,v) is continuous for the
norm of L?, it has a unique continuous extension @ over L%. Set p := p,, ,. By @), we can

write Q(v) = Qo(v) + Q1(v) + Q2(v) with:

Q(v) = [y Hyy (9, p) (us 200t

+ 2uw(T)* Oyy (Yu(T)) 20,0 (T) + foT Zz,vgyy(yu)zu,vdn
Qi(v) = 2y Hyu(.yup)(zu0, 0)dt
Qo(v) = fOTHuu(u,yu,p)(uv)dt

Let v, — © € L?(0,7). The mapping L?(0,T) — H(0,T) ; v — 2,, being linear con-
tinuous, z, := 2., converges weakly to Z := z, 5. Since (z,) is bounded in H'(0,7") and
the inclusion of the latter in C[0,T] is compact, (z,) is strongly convergent to z, and thus
Q2(vy,) converges strongly to Q2(v). The term Q1 (v,), bilinear in (z,,v,), also converges
strongly to Q1(7) when z, converges strongly and v, weakly. Therefore, ) is a Legendre
form iff Q¢ is one.

By @), it is easily seen that fy||v||§ < Qo(v) < M||v||§, for some M > 0. Since
Hy(u(t), yu(t),p(t)) is invertible at all ¢, the bilinear form associated with Qo induce a
scalar product equivalent to the one of L2(0,T), in the sense that weak convergence for the
usual scalar product of L?(0,7T') and for the one of Qg are equivalent. Hence (o has the same
properties as |- ,, that is Qo is weakly Ls.c. and if v, — v in L?(0,7) and Qo(v,) — Qo(D),
then v,, — ©. Consequently @)y and therefore @) are Legendre forms, which achieves the
proof. O

Proof of Theorem [{-1l Assume that @3) holds but that the quadratic growth condition (f)
is not satisfied. Then there exist a sequence u, — u in L™, u, # u, such that G(u,) € K
for all n and
2
J(un) < J(u) + o([lun — ully). (57)

Since G(uy) € K and n € Ng(G(u)), we have:

J(un) = J(u) = L(un,n) = L(u,n) = (0, G(un) = G(u)) = L(un, 1) = L(u,n).
Since u, —u — 0 in L™, Lemma B2 yields r(u, — u) = o(||u, — u||§) As Dy, L(u,n) =0,
we have:

1
O(l[un = ul3) > J (wn) = J (u) > 5 Df L(w0)(un = w45 = 1) + 0 [ = u)-

Let (vn,€,) be such that u, —u = €,v, with ||v,||, =1 and €, = ||u, — ul|, — 0. Dividing
by €2 > 0 the above inequality, we get:

D3, L(u,n)(vn, vn) +0(1) < o(1). (58)

The sequence (v,,) being bounded in L?(0,T), taking if necessary a subsequence, we may
assume that (v,) converges weakly to some v € L?(0,T). Since D2, L(u,n) is weakly Ls.c.,
we get passing to the limit:

D}, L(u,n)(v,7) < 0. (59)
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From (&), we derive that J(u + €,v,) — J(u) = €, DJ (u)vy, + 1y < 0(€2), where r,, = O(e2)
(by the same arguments as in the proof of LemmaBE2). Thus DJ(u)v, + O(e,) < o(e,), and
passing to the limit, since the mapping v — DJ(u)v = fOT(Ey(u, Yu)Zu,w + Lu(U, Yoy )v)dt +
&y (Yu(T)) 2,0 (T) is weakly continuous, we obtain:

DJ(u)v < 0. (60)

Since u + €,v, € G~(K) (the inverse image of the set K), v is a weak limit of v, =
(up — u)/€, € DG(u) 1Tk (G(u)). Since K is closed and convex, so is Tk (G(u)). The
mapping DG (u) being continuous, DG (u) ~'Tk (G(u)) is also a closed convex set, and hence
weakly closed. It follows that ¥ € DG(u) 'Tk(G(u)). Therefore, with @), v € Cpz(u).
Thus @J) and ) imply that © = 0. On the other hand, (BR) gives (with Q := D2 L(u,n)):

therefore Q(v,) — Q(v). But Q is a Legendre form by Lemma and v, — v, which
implies that v,, — v in L?(0,7), hence |v,||, — [|7]|,- The expected contradiction arises
since ||vy, |, = 1 for all n whereas ||7||, = 0.

The converse, that holds under stronger assumptions, is a consequence of Corollaries
For convenience, we prove it later with Theorem BTl O

5 Reduction Approach

There is still a gap between statements of Corollary of Theorem Bl and Theorem ET]
whenever essential touch points occur. We show in this section how to deal with this case,
using a reduction approach in order to reformulate the constraint.

The idea of reductions methods (see e.g. [9]) is, when the constraint has finitely many
contact points, to replace it by finitely many inequality constraints. The Hessian of La-
grangian of the corresponding reduced problem has an additional term that matches the
curvature term. We obtain thus a no-gap second-order condition.

5.1 General results on reduction

It is known that the Sobolev spaces W1:>°(0,T) and W%°°(0,T), endowed with the norms
1Z]l1,00 = [|Z||oc + [|Z]| oo and ||Z|2,00 = ||Z||1,00 + ||Z]|s, coincide with the spaces of Lipschitz
continuous functions and the one of functions having a Lipschitz continuous derivative,
respectively. For all t,tq € [0,T], h € W5>(0,T) and x € W2°°(0,T), we have:

|1 (t) = R(to)]
|z(t) — 2(to) — &(to) (t — to)|

|t — tol |/l (61)
31t —tol? ||l oo- (62)

IAIA

We now give some general results about zeros of functions of W1°°(0,T), and local min-
ima/maxima of functions of W?2°°(0,T).
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Lemma 5.1. Let hg € W'>(0,T) and 79 € (0,T) satisfy the three following conditions:
ho(70) = 0 ; ho is continuous at 79 ; ho(7o) # 0. Then for some 6, € > 0, the mapping:

E : Byoo(ho,0)— (0 —&,70+¢€) ; hw— 7, suchthat h(m,) =0, (63)

is well-defined and Lipschitz continuous on Bi o (ho,0), and Fréchet differentiable at ho,
with derivative given by:

DE(ho)d = —d(70)/ho(70), for alld € Whee, (64)
More precisely, we have for all h,h; € By 5o(ho,96), i=1,2 and 7, = Tp, :

=71 = O1(]|h2 = hi]o)s (65)
ho(10)(Th — 70) + h(10) = 01,00 (lh = holloc) - (66)

Proof. Assume w.l.o.g that § := ho(7o) > 0, and denote by c(-) the modulus of continuity
of hg at 79. Fix ¢ > 0 such that c(e) < %6. Thus, hg > %6 on (1o — &,70 + €) and it
follows that ho(mg — €) < —%65 and ho(to +¢) > %65. Set § := min{%ﬁa; %6} and let
h € Bi oo(ho, ). Thus, h(1g —e) < 0 < h(79 + ¢) and h is continuous, so h has at least one
Zero Ty, in (TO —&,T0 + 8). Let (hl,hg) € Bl,oo(hOué) and 7; such that hi(Ti) =0,7=1,2.
By the definition of d, we have hy > %6 a.e. on (179 — €, 79 + €), and, in consequence,

i =71l < ()] = [a() = ha(r)] < Iz — o (67)

Hence |5 — 71| < %th — h1l|oo, which shows the uniqueness of the zero (take hy = ha),
Lipschitz continuity and (3.
By continuity of ZE and hg, and (@1l) applied to h — hg, we have:

ho(7h) = ho(r0)(Th = 10) = ol|7 = 7o)
(h = ho)(h) = (h = ho)(10) = ho(mn) = h(r0) = O(|h = hollsc|mh — Tol)-
Since 73, — 790 = O1,00(||h — hollso) by D), summing the above expansions yields (B8], from
which (64)) follows. O

Lemma 5.2. Let 2o € W*>(0,T) and 79 € (0,T) be such that io(10) = 0, &¢ is continuous
at 7o and Zo(19) < 0. Thus xo has a local mazimum at 7o, and for ¢ > 0 and 6 > 0 small
enough, © € Bs o(x0,0d) attains its mazimum over (1o — &,70 + €) at a unique point T,.
The mapping © : Ba oo(x0,0) — (10 —&,70 +€) ; ® +— 7, is Lipschitz continuous over
By, oo (0,0), Fréchet differentiable at xo, with derivative given by:

DO(zp)w = —i(10)/Zo(70) Ywe W, (68)
Furthermore, the mapping

D : By oo(20,0) = R 5 & — 2(75), (69)
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that associates with x the value of its mazimum on (1o — €,70 + €), is C' over Ba o (z0,0)
and twice Fréchet differentiable at xo with first and second derivatives given by, for all
T € Ba oo(0,0) and d € W

2 d(70)2
Do (z)d = d(7s) ; D*®(x)(d,d) = —— . (70)
21‘0(7’0)
More precisely, for all x,x; € B2 »o(20,0), i = 1,2 and 7, = 7,, we have:
za(r2) = m2(m) + Og0([|2 — 217 ), (71)
_ . i(10)* _ 2
‘T(Tm) - CE(TO) 25.6.0(7'0) + 02,OO(||‘T xo”l,oo)' (72)

Proof. Define § as in the proof of Lemma Bl with hy replaced by —zg. It follows that
for all x € Bg oo(x,0), there exists a unique 7, satisfying @(7,) = 0, and we have #(¢t) <
Z0(10)/2 < 0 a.e. on (19 —&,79 + €). Hence & is decreasing on (19 — ¢, 70 + ¢), and « has
unique maximum over 7o — &, 7y + £] attained at time 7,. By composition of the mapping
= of Lemma B by the mapping = +— h = & € WH°, O is well-defined, continuous over
B3 oo (x0,9) and Fréchet differentiable at zg, and @8) follows from (4).

By (BE) applied to xo — X1, as 11",'1(7'1) =0 and T2 —T1 = OQ)OO(H‘TQ — 1‘1”1700) by (BH), we
get:

x2(12) = x2(m1) + (Z2(11) — &1 (1)) (72 — 1) + O(|72 — 7’1|2)

22(11) + O2,00 (|22 — 7117 )

which shows ([ZI)) and proves that ® is C' with first order derivative given by (). By
continuity of #¢ and (B2) applied to x — xq, we have, as &o(79) = 0:

Te—T0)>
2o(r) = zo(m) + do(r0) = + ol —mol?),
(z = 20)() = (2= w0)(10) +&(70)(7z — 70) + O(||& — Folloc|7e — 70[?)
Summing the above expansions, and since by (B8,

(7o)
i‘Q(To)

Ty —T0 = — Oz,oo(||17—170”1,oo)7

we obtain ([[2). Hence ® is twice Fréchet differentiable at xo with second-order derivative
given by ([{0). O

5.2 Application to optimal control problems.

If the state constraint is of first order ¢ = 1, then Theorem BTl gives a no-gap second-order
condition, that characterizes the quadratic growth. We show in this section how to extend
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this no-gap condition to the case when the trajectory has essential touch points (see Theorem

ET).
Therefore, we assume in this section that the state constraint is not of first order, that
is, the function g™ (u,y) = g,(y)f(u,y) does not depend on u (which means gq(f)(u, y) = 0).

Note that this implies that G(u) = g(y,) € W?°°, for all u € U.

Definition 5.1. Assume that g&l) = 0 (the state constraint is not of order one). Let
u € GTY(K). We say that a touch point T of the trajectory (u,y,) is reducible, if the
following conditions are satified: (i) the function t — g (u(t),y,(t)) is continuous at 7; (ii)
non-tangentiality condition () is satisfied at 7.

Remark 5.1. 1) Point (i) in the above definition is always satisfied if the state constraint
is of order ¢ > 2, since in that case ¢® (u, y.) = ¢ (yu).

2) If ¢ =2 and n € A(u) # 0, sufficient conditions for point (i) are assumptions (A2)-(A4),
since by Prop. ki) they imply the continuity of w.

Let u € G~1(U), and let 7.4 be a finite subset of reducible touch points of the trajectory
(u, y.)- By definition of touch points, there exists € > 0 such that (7 — 2¢,7 4 2¢) C (0,7T)
and (1 — 2e,7 + 2¢) N I(g(y.)) = {7}, for all 7 € Treq. Set I, = Urer..,(T — e, 7+ ¢)
and I, = [0,T]\ I,. Note that I is closed. Let N be the cardinal of 7,.4 and denote by
7L ..., 7Y the elements of 7,.q. By definition of reducible touch points and continuity of
the mapping U — W2, u s g(y,), we may apply Lemma There exists § > 0, such
that for all i = 1,..., N, the mappings

R': Boo(@i,6) = R 3 @ g(ya(rl)),

such that g(y;) attains its (unique) maximum over [7% —¢, i +¢] at time 72, are well-defined.
It follows that for all & € By (u, ),

G(a) e K iff g(ya(t)) <0Vtel, and R'(a) <0Vi=1,...,N. (73)

Denote by g(ya)|» the restriction of g(yaz) to I, and R : @ — (R(@))1<i<n. The reduced
problem is defined as follows:
min  J(@) 5 G(i) = ( 9y 2 i)l ) €K = C_[I] x RY. (74)

W€ B (1,8) )

From (Z3)), it follows that () is locally equivalent to problem (@) in a L° neighborhood
of u. The Lagrangian £ of the reduced problem () is given, for & € By (u,d) and A =
(M, v) € M4 [I] X Rf, by:

L(@,\) = J(@) + /1 g(ya(t))dny(t) +Zuﬂv (75)

The next lemma shows how the Lagrangian, multipliers and critical cone of the reduced
problem ([fd) are related to the ones of problem (@).
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Lemma 5.3. Assume that gq(f) =0, and let u € GH(K) and Treq, 1o, I, R, G and L be
defined as above. Let A = (my,v) € My (L] x RY. For § > 0 small enough, the function
@ +— L(@, \) is C* on Boo(u,8) and twice Fréchet differentiable at u. Define n € M, [0,T]
by:

N
dn(t) = dnp(t) on I ; dn(t) = Z vi0ri (t) on I,. (76)

i=1

Then we have: L(u,\) = L(u,n), Dy L(u,\) = D, L(u,n),
DG(u)"'Tic(DG(v)) = DG(u)™ Tk (G(u)), (77)

A € Ne(G(u)) iff ne Ng(G(uw)),
N (1) i i

D2 ) = DiyL) — 3w vl unlr)) (78)

= 9®(u(r) yu(rh))

Proof. Note that R! = ®* 0 G, i = 1,..., N, where the mappings ®’ are defined by () in
Lemma B2 applied to (20, 70) = (g9(yu), 7). It follows from Lemma B2 that R is C! over a
small ball By (u,d). By (), the second-order expansion of the state (1) and (28) (since

gvgl) = 0), that gives %DG(u)v = gél)(yu)zuﬁv, we see that, for all v € U:
DRi(u)v = D@i(G(u))DG(u)v = gy(yU(Tzi))Zu,v(TZ)v (79)

D2R(u)(v,v)

Do (G(u))D?*G(u)(v,v) + D?*®(G(u))(DG(u)v, DG (u)v)
Zunw(Te) Gy (Y (70) 20,0 (T4) + 9y (Yu (7)) 2000 (7,,)
(93 (7)) 200 (72))*

gD (u(rl) yu(7l))
The conclusion follows easily from the above expressions (see the proof of Lemma EZTI), {7
is obtained as a consequence of ([Z9). O

It follows that if v € U and A(u) # 0, the Lagrange multipliers A and n associated with
u in problems ([4) and (#) respectively, are related by [Z8). By (@), it follows also that the
critical cone C(u) for problem (7)) is equal to C'(u). We shall show that the statement of
Th. Edlremains true by replacing L(u, n) by L£(u, A). That is, the main result of this paper,
with Th. Bl (and Th. BTl for first-order state constraint), is the next theorem.

Theorem 5.1. Assume that gq(f) = 0 (the state constraint is not of first order). Let u € U
satisfy ({I3) with Lagrange multiplier n, and assume that (A2’°) holds. Let T,.q be a finite
set of reducible touch points of u, and v, := [n(7)]. If the following second-order sufficient
condition is satisfied:

(1) T))Z T 2
DiuL(u,ﬁ)(’U,’U)— Z I/T(gy (yu( )) UKU( ))

2
S Se9ye(®)le=r

>0 Yve Cp2(u)\ {0} (80)
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then u is a local solution of {@l) satisfying the quadratic growth condition ([4).

Conversely, if (A1)-(A6) hold, then the finitely many essential touch points of the trajec-
tory (u,y.) are all reducible, and the second-order sufficient condition ([B0) is satisfied with
Trea = T,5%° iff the quadratic growth condition (8) is satisfied.

Remark 5.2. Note that if 7,.q = 0, ®0) coincides with @J). If 7,.q contains essential
touch points, then by (B2) the contribution in (B of points in 7.4 is such that the sum is
nonpositive, and therefore the sufficient condition (B is in general weaker than (3.

We first need to extend Lemma EE2 to the Lagrangian £. Note that £ is not C? in a L>
neighborhood of u, thus (&6) does not hold with L.

Lemma 5.4. For 6 > 0 small enough and all v € Bs(0,0),
1
Lu~+v,A) = L(u,\) + Dy L(u, \)v+ gDiuﬁ(u, A)(v,v) +7(v), (81)

with 7(v) = oo ([|v]|3)-
Proof. Tt is easily seen from ([A) and (Z8) that

N
Llu+v,A) = Llw+v,m) + > vi(gWuro(Tiyy)) = 9(Wuso(T0)))-
i=1
We may write 7(v) = r(v) + 7(v), where r(v) is given by (BH) and satisfies r(v) = O(||v||3)
by Lemma B2, and by ([Z8) we have #(v) = Zf\il v;t;(v) with, fori =1,..., N:

1 i i
(93" (i) 2 (72))?
T, w)” (82)
293 (u(r)), yu(Tl))
Fix i = 1,...,N, and set zg := g(y,) and 79 := 7. By definition of reducible touch

u

points, _(:co,To) satisfy the assumptions of Lemma Set * = g(yuiy) € W2, then

Te = T,,,, and since the state constraint is not of first order, we have & = 9 (Yuto),
i =g@(u+v,yuys) and hence, by EI):

2 = 2oll1,00 = Osc(llvll1) 5 [[& = Zolloc = Ooc(l|v]]oo)- (83)

Fi(0) 1= g(Wuro(Tig)) — 9(Wuro(Th)) +

. 1
Since 9(1)(yu+v) - 9(1)(yu) - gél)(yu)zu,v = fo (9(Yutov)Zutov — 9(Yu)zu)do, we also have
by B0) and G2)-G3), setting h == g\ (1) 20, that

& = &0 = Plloo = Oco(||v[|3)- (84)
We may now write 7;(v) = 7;1(v) + 74,2(v) with:
i(0)?

2%0(70)

h(70)? — @(70)*
2%0(70)

721‘71(’0) = .T(Tm) — 1‘(7‘0) + ; 721’,2(“) =
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By @) and ), we have 7;1(v) = o (||v]|?). From |a? — b?| < (2|a|] + |a — b])|a — b,
[[2llcc = Oso([[v]l1) by B2), [B4) with @o(70) = 0, and [[-[|, <[|-[l; [|-[|o, We see that 7 5(v) =
Oso(IV][1][v13) € Oso(||v]|3]|v]|s0)- Tt follows that 7;(v) = 0s(||v]|3) for all i and finally that
7(v) = 0s0 (||v]|3), which achieves the proof. O

Proof of Theorem [l Since the sum of a Legendre form and of a weakly continuous qua-
dratic form remains a Legendre form, we deduce easily from (i) and Lemma 3 since the
additional terms
D))
are weakly continuous quadratic forms, that the unique continuous extension of D, L(u, \)
over L? is a Legendre form. In addition, since 7#(v) = 0o (||v||3) by Lemma B4 the proof
of Theorem ECT] still applies, replacing L(u,n) by L(u,A). It follows that BD) implies the
quadratic growth condition ().

Conversely, if (A1)-(A6) hold, there are finitely many essential touch points of (u,y,,),
all being reducible. Assume that (@) holds. Then for sufficiently small € > 0, u is solution
of the following problem:

(1) i), (1) i
v o 2y (ri) (Yu ()" 9y " (Yu(Ti))

u

(Pe)  min {J°(@) = J@) —ella-ul3} 5 Ga)e K, (85)
with the same Lagrange multiplier n as D, J*(u) = D, J(u). Since in addition (P.) and
@) have the same constraints, they have the same critical cone. Denote the Lagrangian of
(P:) by L*(u,n). Note that if assumptions (A0)-(A6) are satisfied for problem ), so are
they for problem (BH), so that, for ¢ small enough, HE, = H,, — ¢ is positive, uniformly
over t. The extended second-order necessary condition in Corollary B2 for (P.) yields, since
D2, L*(u,n)(v,v) = D2, L(u,n)(v,0) — el|o]3:

(1) T))Z T 2
DiuL(u,n)(v,v)— Z v, (gU (yu( )) u,'u( ))

>ellv]|2, Vv e Cra(u). (86)
St dm W)=

Hence (B0) is satisfied with 7,..q = 7,5%¢.
Note that taking 7,.q = 0 = 7,5°° proves the converse in Th. Bl when (u,y,) has no
essential touch point (including the case ¢ = 1). O

Remark 5.3. The second-order sufficient condition in (B) remains in quite an abstract
form, of little help to check the optimality of a trajectory in application to real life problems.
Some wverifiable second-order sufficient conditions exist in the literature that are based on
Ricatti equations, see e.g. [20]. They may be too strong, however, since they ensure in
general the coercivity of the Hessian of the Lagrangian over a space that is larger than the
critical cone Cprz(u). See also [I7, 18] for first order state constraints.

Remark 5.4. Handling an infinite number of junction points remains an open problem. It
was shown indeed by Robbins in [23], on an example involving a third order state constraint,
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and though satisfying all regularity assumptions (A0)-(A3), that the optimal trajectory has
a boundary arc, but except for a nowhere dense subset of initial conditions yq, the latter is
not regular, its entry point being the cluster point of an infinite sequence of touch points.

6 Conclusion

Our main result is a no-gap condition for an optimal control problem with a single state
constraint of any order and only one control. The main hypotheses are that there are finitely
many junction points, the essential touch points being reducible, the entry/exit points being
regular, and strict complementarity on boundary arcs. It should not be too difficult to deal
with the results in the case when g(y,(T")) = 0.

An open problem of interest is the characterization of strong regularity in the sense of
Robinson [26] for optimal control problems with state constraints. See related results in [4]
Section 5.1] and Malanowski [T6].

We hope in the future to extend the results of this paper to the case of several state
constraints and control variables, and to relate these second-order conditions to the study
of the well-posedness of the shooting algorithm.

A Appendix

Lemma A.1 (Extension of Gronwall Lemma). Let p € BV ([0, T];R"™) be such that:
ldp(t)| < klp(t)|dt +dp(t), Vte[0,T], (87)

for some positive constant k, and a nonnegative bounded measure p. Then:

T
Ipllc <TI0+ [ =T Vu()
0

Proof. Set p(t) = |p(t)|- Then p is a nonnegative bounded measure, and for all ¢ € [0,T)
and s — 0%, we have:

t+s
/t (o) = plt+5)— plt) = |p(t + 5)| - [p(t)]

IN

t+s t+s
b+ -p0l =1 [ dplo)l< [ lan(o)l
t t
From &1) it follows that p(t) < ¢(t) for all t € [0, T, where ¢ is solution of

o(t) = |p(0)] + /@/0 o(s)ds —|—/0 du(s), for all ¢ e [0,T].

Then
de (1)) = e " dip(t) — ne " ip(t)dt = e du(t).

Therefore, e " p(t) = |p(0)| + f(f e~ "*du(s). The result follows. O
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Lemma A.2 (Integration by parts). For anyp € BV ([0,T],R™) and = € WH1(0, T; R"),
the following relation holds:

T T
| o020 == [ szt + p(0)(1) ~ p0)2(0). ()
0 0

Proof. Tt is sufficient to give the proof when n = 1. Since p has bounded variation, it

has at most countably many discontinuity times. Assume first that p has finitely many
discontinuity times 0 <71 < ... <7y <T. Set 79 := 0 and 7y41 := T. We have:
N+1

/po Z/ dt—&—z Tn))
0 Tn—1

Since p and z are absolutely continuous on (7,-1, 7, ), we may integrate by parts:

T N+1 N+1
/ dp(t) Z / t)dt — Z p(T;—l)Z(Tn—l)
0 Tn—1 n=1

N+1

+ Y p(1)2(m) + D [p()l2(a),

which immediately gives (B8). Assume now that p has countably many discontinuity times,
(tn), n € N, (the latter being not necessarily in increasing order) with jumps discontinuities
Vn = [p(7n)], such that > |v,| < [|dp|| < +oco. Denote by p, the absolutely continuous

part of p, i.e. such that dp = p,dt+3>_ . Vndr,. For N >0, set dpy := padt+25y:0 Unr,, -
It follows that, for all NV,

T T
/0 dpw (£)2 (1) = / py (D21t + px (T)2(T) — pr(0)=(0). (89)

Since we have

o0

[dp—pn)O] < > [waldn, (1),

n=N+1

by Lemma [AT] we deduce that |[p —pnllo < Dol niq|¥n| — 0 when N — 4oco. Hence
we can pass to the limit in (89), which gives the result. O
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