Skip to main content
Log in

MIR closures of polyhedral sets

  • FULL LENGTH PAPER
  • Series A
  • Published:
Mathematical Programming Submit manuscript

An Erratum to this article was published on 19 November 2009

Abstract

We study the mixed-integer rounding (MIR) closures of polyhedral sets. The MIR closure of a polyhedral set is equal to its split closure and the associated separation problem is NP-hard. We describe a mixed-integer programming (MIP) model with linear constraints and a non-linear objective for separating an arbitrary point from the MIR closure of a given mixed-integer set. We linearize the objective using additional variables to produce a linear MIP model that solves the separation problem exactly. Using a subset of these additional variables yields an MIP model which solves the separation problem approximately, with an accuracy that depends on the number of additional variables used. Our analysis yields an alternative proof of the result of Cook et al. (1990) that the split closure of a polyhedral set is again a polyhedron. We also discuss a heuristic to obtain MIR cuts based on our approximate separation model, and present some computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen K., Cornuejols G. and Li Y. (2005). Split closure and intersection cuts. Math. Program. Ser. A 102: 457–493

    Article  MATH  MathSciNet  Google Scholar 

  2. Balas E. and Bonami P. (2007). New variants of lift-and-project cut generation from the LP tableau: open source implementation and testing. In: Fischetti, M. and Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 4513, pp 89–103. Springer, Berlin

    Chapter  Google Scholar 

  3. Balas E. (1979). Disjunctive programming. Ann. Discret. Math. 5: 3–51

    Article  MATH  MathSciNet  Google Scholar 

  4. Balas E., Ceria S. and Cornuéjols G. (1996). Mixed 0-1 programming by lift-and-project in a branch-and-cut framework. Manag. Sci. 42: 1229–1246

    Article  MATH  Google Scholar 

  5. Balas E., Ceria S., Cornuéjols G. and Natraj G. (1996). Gomory cuts revisited. Operat. Res. Lett. 19: 1–9

    Article  MATH  Google Scholar 

  6. Balas E. and Perregaard M. (2003). A precise correspondence between lift-and-project cuts, simple disjunctive cuts and mixed integer Gomory cuts for 0-1 programming. Math. Program. Ser. B 94: 221–245

    Article  MATH  MathSciNet  Google Scholar 

  7. Balas E. and Saxena A. (2008). Optimizing over the split closure. Math. Program. Ser. A 113: 219–240

    Article  MATH  MathSciNet  Google Scholar 

  8. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer programming library: MIPLIB 3.0

  9. CglLandP: https://projects.coin-or.org/Cgl/wiki/CglLandP

  10. Bonami P. and Cornuéjols G. (2008). A note on the MIR closure. Operat. Res. Lett. 36: 4–6

    Article  MATH  Google Scholar 

  11. Bonami P., Cornuéjols G., Dash S., Fischetti M. and Lodi A. (2008). Projected Chvátal-Gomory cuts for mixed integer linear programs. Math. Program. Ser. A 113: 241–257

    Article  MATH  Google Scholar 

  12. Bonami P. and Minoux M. (2005). Using rank-1 lift-and-project closures to generate cuts for 0-1 MIPs, a computational investigation. Discret. Optim. 2: 288–307

    Article  MATH  MathSciNet  Google Scholar 

  13. Caprara A. and Letchford A. (2003). On the separation of split cuts and related inequalities. Math. Program. Ser. B 94: 279–294

    Article  MATH  MathSciNet  Google Scholar 

  14. Chvátal V. (1973). Edmonds polytopes and a hierarchy of combinatorial problems. Discret. Math. 4: 305–337

    Article  MATH  Google Scholar 

  15. Cook W.J., Kannan R. and Schrijver A. (1990). Chvátal closures for mixed integer programming problems. Math. Program. Ser. A 47: 155–174

    Article  MATH  MathSciNet  Google Scholar 

  16. Cornuéjols G. (2008). Valid Inequalities for Mixed Integer Linear Programs. Math. Program. Ser. B 112: 3–44

    Article  MATH  Google Scholar 

  17. Cornuéjols G. and Li Y. (2001). Elementary closures for integer programs. Operat. Res. Lett. 28: 1–8

    Article  MATH  Google Scholar 

  18. Cornuéjols G. and Li Y. (2001). On the Rank of Mixed 0,1 Polyhedra. Math. Program. Ser. A 91: 391–397

    Google Scholar 

  19. Danna E., Rothberg E. and Le Paper C. (2005). Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Program. Ser. A 102: 71–90

    Article  MATH  Google Scholar 

  20. Dash, S., Günlük, O., Goycoolea, M.: Two step MIR inequalities for mixed-integer programs. IBM Research Report 23791 (2005)

  21. Eisenbrand F. (1999). On the membership problem for the elementary closure of a polyhedron. Combinatorica 19: 297–300

    Article  MATH  MathSciNet  Google Scholar 

  22. Gomory, R.E.: An algorithm for the mixed integer problem, RM-2597, The Rand Corporation (1960)

  23. Fischetti M. and Lodi A. (2007). Optimizing over the first Chvátal closure. Math. Program. Ser. B 110: 3–20

    Article  MATH  MathSciNet  Google Scholar 

  24. Marchand H. and Wolsey L.A. (2001). Aggregation and Mixed Integer Rounding to solve MIPs. Operat. Res. 49: 363–371

    Article  MATH  MathSciNet  Google Scholar 

  25. Nemhauser G. and Wolsey L.A. (1990). A recursive procedure to generate all cuts for 0-1 mixed integer programs. Math. Program. Ser. A 46: 379–390

    Article  MATH  MathSciNet  Google Scholar 

  26. Nemhauser G. and Wolsey L.A. (1988). Integer and Combinatorial Optimization. Wiley, New York

    MATH  Google Scholar 

  27. Vielma J.P. (2007). A Constructive Characterization of the Split Closure of a Mixed Integer Linear Program. Operat. Res. Lett. 35: 29–35

    Article  MATH  MathSciNet  Google Scholar 

  28. Wolsey L.A. (1998). Integer Programming. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeeb Dash.

Additional information

Andrea Lodi was supported in part by the EU projects ADONET (contract n. MRTN-CT-2003-504438) and ARRIVAL (contract n. FP6-021235-2).

An erratum to this article can be found at http://dx.doi.org/10.1007/s10107-009-0328-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, S., Günlük, O. & Lodi, A. MIR closures of polyhedral sets. Math. Program. 121, 33–60 (2010). https://doi.org/10.1007/s10107-008-0225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0225-x

Mathematical Subject Classification (2000)

Navigation