Abstract
In this work nonlinear non-convex multiobjective bilevel optimization problems are discussed using an optimistic approach. It is shown that the set of feasible points of the upper level function, the so-called induced set, can be expressed as the set of minimal solutions of a multiobjective optimization problem. This artificial problem is solved by using a scalarization approach by Pascoletti and Serafini combined with an adaptive parameter control based on sensitivity results for this problem. The bilevel optimization problem is then solved by an iterative process using again sensitivity theorems for exploring the induced set and the whole efficient set is approximated. For the case of bicriteria optimization problems on both levels and for a one dimensional upper level variable, an algorithm is presented for the first time and applied to two problems: a theoretical example and a problem arising in applications.
Similar content being viewed by others
References
Abo-Sinna M.: A bi-level non-linear multi-objective decision making under fuzziness. Opsearch 38(5), 484–495 (2001)
Alt W.: Parametric optimization with applications to optimal control and sequential quadratic programming. Bayreuther Math. Schr. 35, 1–37 (1991)
Bard, J.F.: Practical Bilevel Optimization. Algorithms and Applications. Nonconvex Optimization and Its Applications, vol. 30. Kluwer, Dordrecht (1998)
Bonnel H., Morgan J.: Semivectorial bilevel optimization problem: Penalty approach. J. Optim. Theory Appl. 131(3), 365–382 (2006)
Das I., Dennis J.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 14, 63–69 (1997)
Das I., Dennis J.: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)
Dempe S.: Foundations of Bilevel Programming. Nonconvex Optimization and Its Applications, vol. 61. Kluwer, Dordrecht (2002)
Dempe S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52(3), 333–359 (2003)
Dempe, S.: Bilevel programming—a survey. Preprint 2003-11, Fakultät für Mathematik und Informatik, TU Bergakademie Freiberg, Germany (2003)
Dinkelbach, W., Dürr, W.: Effizienzaussagen bei Ersatzprogrammen zum Vektormaximumproblem, iv. Oberwolfach-Tag. Operations Res 1971. Oper. Res. Verf. 12:69–77 (1972)
Ehrgott, M.: Multicriteria optimisation. Lect. Notes Econ. math. Syst, vol. 491. Springer, Berlin (2000)
Eichfelder, G.: Parametergesteuerte Lösung nichtlinearer multikriterieller Optimierungsprobleme. PhD Thesis, Univ. Erlangen-Nürnberg, Germany (2006)
Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. (2007) doi:10.1007/s10589-007-9155-4
Eichfelder, G.: An adaptive scalarization method in multi-objective optimization. SIAM J. Optim. (to appear)
Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Mathematics in Science and Engineering, vol. 165. Academic Press, London (1983)
Fliege J.: Gap-free computation of Pareto-points by quadratic scalarizations. Math. Methods Oper. Res. 59(1), 69–89 (2004)
Fliege J., Vicente LN: Multicriteria approach to bilevel optimization. J. Optim. Theory Appl. 131(2), 209–225 (2006)
Haimes Y., Lasdon L., Wismer D.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1, 296–297 (1971)
Hillermeier C., Jahn J.: Multiobjective optimization: survey of methods and industrial applications. Surv. Math. Ind. 11, 1–42 (2005)
Jahn J.: Vector Optimization: Theory, Applications and Extensions. Springer, Berlin (2004)
Jahn J.: Multiobjective search algorithm with subdivision technique. Comput. Optim. Appl. 35, 161–175 (2006)
Jahn J., Merkel A.: Reference point approximation method for the solution of bicriterial nonlinear optimization problems. J. Optim. Theory Appl. 74(1), 87–103 (1992)
Jittorntrum K.: Solution point differentiability without strict complementarity in nonlinear programming. Math. Program. Study 21, 127–138 (1984)
Kim I., de Weck O.: Adaptive weighted sum method for bi-objective optimization. Struct. Multidisciplinary Optim. 29, 149–158 (2005)
Lin J.G.: On min-norm and min-max methods of multi-objective optimization. Math. Program. 103(1), 1–33 (2005)
Loridan P.: ε-solutions in vector minimization problems. J. Optim. Theory Appl. 43, 265–276 (1984)
Marglin S.: Public Investment Criteria. MIT Press, Cambridge (1967)
Miettinen K.M.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
Nishizaki I., Sakawa M.: Stackelberg solutions to multiobjective two-level linear programming problems. J. Optim. Theory Appl. 103(1), 161–182 (1999)
Osman M., Abo-Sinna M., Amer A., Emam O.: A multi-level nonlinear multi-objective decision-making under fuzziness. Appl. Math. Comput. 153(1), 239–252 (2004)
Pascoletti A., Serafini P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42(4), 499–524 (1984)
Prohaska, J.: Optimierung von Spulenkonfigurationen zur Bewegung magnetischer Sonden. Diplomarbeit, Univ. Erlangen-Nürnberg, Germany (2005)
Ruzika S., Wiecek M.: Approximation methods in multiobjective programming. J. Optim. Theory Appl. 126(3), 473–501 (2005)
Sawaragi Y., Nakayama H., Tanino T.: Theory of Multiobjective Optimization. Number 176 in Mathematics in science and engineering. Academic Press, London (1985)
Schandl B., Klamroth K., Wiecek M.M.: Norm-based approximation in bicriteria programming. Comput. Optim. Appl. 20(1), 23–42 (2001)
Shi X., Xia H.: Interactive bilevel multi-objective decision making. J. Oper. Res. Soc. 48(9), 943–949 (1997)
Shi X., Xia H.: Model and interactive algorithm of bi-level multi-objective decision-making with multiple interconnected decision makers. J. Multi-Criteria Decis. Anal. 10, 27–34 (2001)
Staib T.: On two generalizations of Pareto minimality. J. Optim. Theory Appl. 59(2), 289–306 (1988)
Teng C.-X., Li L., Li H.-B.: A class of genetic algorithms on bilevel multi-objective decision making problem. J. Syst. Sci. Syst. Eng. 9(3), 290–296 (2000)
Tuy H., Migdalas A., Hoai-Phuong N.: A novel approach to bilevel nonlinear programming. J. Global Optim. 38(4), 527–554 (2007)
Vicente L.N., Calamai P.H.: Bilevel and multilevel programming: A bibliography review. J. Glob. Optim. 5(3), 291–306 (1994)
Yin Y.: Multiobjective bilevel optimization for transportation planning and management problems. J. Adv. Transp. 36(1), 93–105 (2000)
Younes, Y.: Studies on discrete vector optimization. Dissertation, University of Demiatta, Egypt (1993)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eichfelder, G. Multiobjective bilevel optimization. Math. Program. 123, 419–449 (2010). https://doi.org/10.1007/s10107-008-0259-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-008-0259-0