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Abstract

In this paper we consider the solution of certain convex integer minimization problems via

greedy augmentation procedures. We show that a greedy augmentation procedure that employs

only directions from certain Graver bases needs only polynomially many augmentation steps

to solve the given problem. We extend these results to convex N-fold integer minimization

problems and to convex 2-stage stochastic integer minimization problems. Finally, we present

some applications of convex N-fold integer minimization problems for which our approach

provides polynomial time solution algorithms.

1 Introduction

For an integer matrix A ∈ Zd×n, we define the circuits C(A) and the Graver basis G(A) as follows.
Herein, an integer vector v ∈ Zn is called primitive if all its components are coprime, that is,
gcd(v1, . . . , vn) = 1.

Definition 1 Let A ∈ Zd×n and let Oj, j = 1, . . . , 2n denote the 2n orthants of Rn. Then the
cones

Cj := ker(A) ∩Oj = {z ∈ Oj : Az = 0}

are pointed rational polyhedral cones. Let Rj and Hj denote the (unique) minimal sets of primitive
integer vectors generating Cj over R+ and Cj ∩ Zn over Z+, respectively. Then we define

C(A) :=
2n
⋃

j=1

Rj \ {0} and G(A) :=
2n
⋃

j=1

Hj \ {0}

to be the set C(A) of circuits of A and the Graver basis G(A) of A.
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Remark 2 It is not hard to show that C(A) corresponds indeed to all primitive support-minimal
vectors in ker(A) [7].

Already in 1975, Graver showed that C(A) and G(A) provide optimality certificates for a large class
of continuous and integer linear programs, namely for

(LP)A,u,b,f : min{f(z) : Az = b, 0 ≤ z ≤ u, z ∈ Rn
+},

and
(IP)A,u,b,f : min{f(z) : Az = b, 0 ≤ z ≤ u, z ∈ Zn

+},

where the linear objective function f(x) = c⊺x, the upper bounds vector u, and the right-hand
side vector b are allowed to be changed [7]. A solution z0 to (LP)A,u,b,f is optimal if and only if

there are no g ∈ C(A) and α ∈ R+ such that z0 + αg is a feasible solution to (LP)A,u,b,f that

has a smaller objective function value f(z0 + αg) < f(z0). Analogously, an integer solution z0 to
(IP)A,u,b,f is optimal if and only if there are no g ∈ G(A) and α ∈ Z+ such that z0+αg is a feasible

solution to (IP)A,u,b,f that has a smaller objective function value f(z0 + αg) < f(z0).

Thus, the directions from C(A) and G(A) allow a simple augmentation procedure that iteratively
improves a given feasible solution to optimality. While this augmentation process has to terminate
for bounded IPs, it may show some zig-zagging behaviour, even to non-optimal solutions for LPs
[8]:

Example 3 Consider the problem

min{z1 + z2 − z3 : 2z1 + z2 ≤ 2, z1 + 2z2 ≤ 2, z3 ≤ 1, (z1, z2, z3) ∈ R3
≥0}

with optimal solution (0, 0, 1). Introducing slack variables z4, z5, z6 we obtain the problem min{c⊺z :
Az = (2, 2, 1)⊺, z ∈ R6

≥0} with c⊺ = (1, 1,−1, 0, 0, 0) and

A =





2 1 0 1 0 0
1 2 0 0 1 0
0 0 1 0 0 1



 .

The vectors (1, 0, 0,−2,−1, 0), (0, 1, 0,−1,−2, 0), (1,−2, 0, 0, 3, 0), (2,−1, 0,−3, 0, 0), (0, 0, 1, 0, 0,−1)
together with their negatives are the circuits of A. The improving directions are given by all circuits
v for which c⊺v > 0.

(0,1/4,0)

(0,1,0)

optimum (0,0,1)

(0,1,1)

(1,0,1)

(1/8,0,0) (1/2,0,0) (1,0,0)(0,0,0)
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Now start with the feasible solution z0 = (0, 1, 0, 1, 0, 1). Following the directions (0, 1, 0,−1,−2, 0)
and (0, 0,−1, 0, 0, 1) as far as possible, we immediately arrive at (0, 0, 1, 2, 2, 0) which corresponds
to the desired optimal solution (0, 0, 1) of our problem. However, alternatively choosing only the
vectors (−1, 2, 0, 0,−3, 0) and (2,−1, 0,−3, 0, 0) as improving directions, the augmentation process
does not terminate. In our original space R3, this corresponds to the sequence of movements

(0, 1, 0)→

(

1

2
, 0, 0

)

→

(

0,
1

4
, 0

)

→

(

1

8
, 0, 0

)

→

(

0,
1

16
, 0

)

→ . . .

clearly shows the zig-zagging behaviour to the non-optimal point (0, 0, 0). �

Indeed, in order to avoid zig-zagging, certain conditions on the selection of the potential augmenting
circuits must be imposed. As suggested in [8], one can avoid such an undesired convergence

• by first choosing an augmenting circuit direction freely, and

• by then moving only along such circuit directions that do not increase the objective value,
that is c⊺g ≤ 0, and which introduce an additional zero component in the current feasible
solution, that is supp(z0 + αg) ( supp(z0). After O(n) such steps, we have again reached a
vertex and may perform a free augmentation step if possible.

A natural question that arises is, whether there are strategies to choose a direction from C(A) and
G(A), respectively, to augment any given feasible solution of (LP)A,u,b,f or (IP)A,u,b,f to optimality
in only polynomially many augmentation steps. In this paper, we answer this question affirmatively.
For this let us introduce the notion of a greedy augmentation vector.

Definition 4 Let F ⊆ Rn be a set of feasible solutions, z0 ∈ F , f : Rn → R any objective function,
and let S ⊆ Rn be a (finite) set of directions. Then we call any optimal solution to

min{f(z0 + αg) : α ∈ R+, g ∈ S, z0 + αg ∈ F},

a greedy augmentation vector (from S for z0).

Theorem 5 Let A ∈ Zd×n, u ∈ Qn, b ∈ Zd and c ∈ Qn be given. Moreover, let f(z) = c⊺z. Then
the following two statements hold.

(a) Any feasible solution z0 to (LP)A,u,b,f can be augmented to an optimal solution of (LP)A,u,b,f

by iteratively applying the following greedy procedure:

1. Choose a greedy direction αg from C(A) and set z0 := z0 + αg.

If αg = 0, return z0 as optimal solution.

2. As long as it is possible, find a circuit direction g ∈ C(A) and α > 0 such that z0 + αg
is feasible, c⊺(z0 + αg) ≤ c⊺z0, and supp(z0 + αg) ( supp(z0), and set z0 := z0 + αg.

Go back to Step 1.
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The number of augmentation steps in this augmentation procedure is polynomially bounded
in the encoding lengths of A, u, b, c, and z0.

(b) Any feasible solution z0 to (IP)A,u,b,f can be augmented to an optimal solution of (IP)A,u,b,f

by iteratively applying the following greedy procedure:

Choose a greedy direction αg from G(A) and set z0 := z0 + αg.

If αg = 0, return z0 as optimal solution.

The number of augmentation steps in this augmentation procedure is polynomially bounded
in the encoding lengths of A, u, b, c, and z0.

For our proof of Theorem 5 we refer to Section 5.1. Note that in [4] it was shown that the Graver
basis G(A) allows to design a polynomial time augmentation procedure. This procedure makes use
of the oracle equivalence of so-called oriented augmentation and linear optimization established in
[15]. However, the choice of the Graver basis element that has to be used as a next augmenting
vector using the machanism of [15] is far more technical than our simple greedy strategy suggested
by Theorem 5, Part (b).

In this paper, we generalize Part (b) of Theorem 5 to certain Z-convex objective functions. We say
that a function g : Z→ Z is Z-convex, if for all x, y ∈ Z and for all 0 ≤ λ ≤ 1 with λx+(1−λ)y ∈ Z,
the inequality g(λx + (1 − λ)y) ≥ λg(x) + (1 − λ)g(y) holds. With this notion of Z-convexity, we
generalize Part (b) of Theorem 5 to nonlinear convex objectives of the form f(c⊺z, c⊺1z, . . . , c

⊺

sz),
where

f(y0, y1, . . . , ys) =

s
∑

i=1

fi(yi) + y0 (1)

is a separable Z-convex function and where c0, . . . , cs ∈ Zn are given fixed vectors. In particular,
each function fi : Z→ Z is Z-convex. When all fi ≡ 0, we recover linear integer optimization as a
special case. To state our result, let C denote the s×n matrix with rows c1, . . . , cs and let G(A,C)
denote the Graver basis of

(

A 0
C Is

)

projected onto the first n variables. As was shown in [9, 13], this
finite set provides an improving direction for any non-optimal solution z0 of (IP)A,u,b,f .

Theorem 6 Let A ∈ Zd×n, u ∈ Zn, b ∈ Zd, c ∈ Qn, c1, . . . , cs ∈ Qn. Moreover, let f̄(z) :=
f(c⊺z, c⊺1z, . . . , c

⊺

sz), where f denotes a separable Z-convex function as in (1) given by a polynomial
time comparison oracle which, when queried on x, y ∈ Zs+1, decides whether f(x) < f(y), f(x) =
f(y), or f(x) > f(y) holds in time polynomial in the encoding lengths of x and y. Moreover, let
H be an upper bound for the difference of maximum and minimum value of f̄ over the feasible set
{z : Az = b, 0 ≤ z ≤ u, z ∈ Zn

+} and assume that the encoding length of H is of polynomial size in
the encoding lengths of A, u, b, c, c1, . . . , cs. Then the following statement holds.

Any feasible solution z0 to (IP)A,u,b,f̄ can be augmented to an optimal solution of (IP)A,u,b,f̄ by
iteratively applying the following greedy procedure:

Choose a greedy direction αg from G(A,C) and set z0 := z0 + αg.

If αg = 0, return z0 as optimal solution.
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The number of augmentation steps in this augmentation procedure is polynomially bounded in the
encoding lengths of A, u, b, c, c1, . . . , cs, and z0.

For our proof of Theorem 6 we refer to Section 5.2. As a consequence to Theorem 6, we construct in
Sections 2 and 3 polynomial time algorithms to solve convex N -fold integer minimization problems
and convex 2-stage stochastic integer minimization problems. In the first case, the Graver basis
under consideration is of polynomial size in the input data and hence the greedy augmentation
vector αg can be found in polynomial time. In the second case, the Graver basis is usually of
exponential size in the input data. Despite this fact, the desired greedy augmentation vector αg
can be constructed in polynomial time, if the fi are convex polynomial functions. Finally, we present
some applications of convex N -fold integer minimization problems for which our approach provides
a polynomial time solution algorithm. We conclude the paper with our proofs of Theorems 5 and
6.

2 N-fold convex integer minimization

Let A ∈ Zda×n, B ∈ Zdb×n, and c1, . . . , cs ∈ Zn be fixed and consider the problem

min

{

N
∑

i=1

f (i)
(

x(i)
)

:

N
∑

i=1

Bx(i) = b(0), Ax(i) = b(i), 0 ≤ x(i) ≤ u(i), x(i) ∈ Zn, i = 1, . . . , N

}

,

where we have

f (i)(z) :=

s
∑

j=1

f
(i)
j

(

c⊺j z
)

+ c(i)
⊺

z

for given convex functions f
(i)
j and vectors c(i) ∈ Zn, i = 1, . . . , N , j = 1, . . . , s. If we dropped the

coupling constraint
∑N

i=1 Bx(i) = b(0), this optimization problem would decompose into N simpler
convex problems

min
{

f (i)
(

x(i)
)

: Ax(i) = b(i), 0 ≤ x(i) ≤ u(i), x(i) ∈ Zn
}

, i = 1, . . . , N,

which could be solved independently. Hence the name “N -fold convex integer program”.

Definition 7 The N-fold matrix of the ordered pair A,B is the following (db +Nda)×Nn
matrix,

[A,B](N) :=















B B B · · · B
A 0 0 · · · 0
0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A















.

For any vector x = (x1, . . . , xN ) with xi ∈ Zn for i = 1, . . . , N , we call the number |{i : xi 6= 0}| of
nonzero building blocks xi ∈ Zn of x the type of x.
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In [11], it was shown that there exists a constant g(A,B) such that for all N the types of the
Graver basis elements in G([A,B](N)) are bounded by g(A,B). In [4], this was exploited to solve
linear N -fold IP in polynomial time.

Lemma 8 (Results from [4])

• For fixed matrices A and B the sizes of the Graver bases G([A,B](N)) increase only polyno-
mially in N .

• For any choice of the right-hand side vector b, an initial feasible solution z0 can be constructed
in time polynomial in N and in the encoding length of b.

• For any linear objective function c⊺z, this solution z0 can be augmented to optimality in time
polynomial in N and in the encoding lengths of b, c, u, and z0.

Using Theorem 6, we can now generalize this polynomial time algorithm to convex objectives of
the form above. Let us prepare the main result of this section by showing that the encoding lengths
of Graver bases from [9, 13] increase only polynomially in N . For this, let C denotes the s × n
matrix with rows c1, . . . , cs.

Lemma 9 Let the matrices A ∈ Zda×n, B ∈ Zdb×n, and C ∈ Zs×n be fixed. Then the encoding
lengths of the Graver bases of

([A,B], C)(N) :=

































B B · · · B
A

A
. . .

A
C Is

C Is
. . .

...
C Is

































.

increase only polynomially in N .

Proof. The claim follows from the results in [4] by rearranging the rows and columns as follows

([A,B], C)(N) :=



























B 0 B 0 · · · B 0
A 0
C Is

A 0
C Is

. . .
. . .

A 0
C Is



























.
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This is the matrix of an N -fold IP with Ā =
(

A 0
C Is

)

and with B̄ = (B 0 ). Hence, the sizes and the
encoding lengths of the Graver bases increase only polynomially in N . �

Now that we have shown that the Graver basis is of polynomial size, we can consider each Graver
basis element g independently and search for the best α ∈ Z+ such that z0+αg is feasible and has
a smallest objective value. This can be done in polynomial time as the following lemma shows.

Lemma 10 Let f : R→ R be a convex function given by a comparision oracle. Then for any given
numbers l, u ∈ Z, the one-dimensional minimization problem min{f(α) : l ≤ α ≤ u} can be solved
by polynomially many calls to the comparision oracle.

Proof. If the interval [l, u] contains at most 2 integers, return l or u as the minimum, depending
on the values of f(l) and f(u). If the interval [l, u] contains at least 3 integers, consider the integers
⌊(l+ u)/2⌋− 1, ⌊(l+ u)/2⌋, ⌊(l+ u)/2⌋+1 ∈ [l, u] and exploit convexity of f to bisect the interval
[l, u] as follows:

If f(⌊(l+u)/2⌋−1) < f(⌊(l+u)/2⌋) holds, then the minimum of f must be attained in the interval
[l, ⌊(l + u)/2⌋]. If, on the other hand, f(⌊(l+ u)/2⌋) > f(⌊(l + u)/2⌋+ 1), then the minimum of f
must be attained in the interval [⌊(l+ u)/2⌋+ 1, u]. If none of the two holds, the minimum of f is
attained in the point α = ⌊(l + u)/2⌋.

Clearly, after O(log(u − l)) bisection steps, the minimization problem is solved. �

The results in [4] together with the previous two lemmas now immediately imply the main result
of this section.

Theorem 11 Let A, B, C be fixed integer matrices of appropriate dimensions. Then the following

holds. Moreover, let f
(i)
j : R → R be convex functions mapping Z to Z given by polynomial time

evaluation oracles. Then the problem

min

{

N
∑

i=1

f (i)
(

x(i)
)

:

N
∑

i=1

Bx(i) = b(0), Ax(i) = b(i), 0 ≤ x(i) ≤ u(i), x(i) ∈ Zn, i = 1, . . . , N

}

,

can be solved in time polynomial in the encoding length of the input data.

Proof. Polynomial time construction of an initial feasible solution from which we can start our
augmentation process follows immediately from the results in [4].

To show that this feasible solution can be augmented to optimality in polynomial time, we note that
by Theorem 6 that only polynomially many greedy augmentation steps are needed. By Lemma 9,
we only need to check polynomially many directions g to search for a greedy augmentation vector.
But this can be done in polynomial time by Lemma 10. �
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3 Convex 2-stage stochastic integer minimization

Multistage stochastic integer programming has become an important field of optimization, see
[3, 12, 14] for details. From a mathematical point of view, the data describing a 2-stage stochastic
integer program is as follows. Let T ∈ Zd×m, W ∈ Zd×n, c1, . . . , cs ∈ Zm, d1, . . . , ds ∈ Zn be fixed,
and consider the problem

min{Eω(f
ω(x, y)) : Tx+Wy = bω, 0 ≤ x ≤ ux, 0 ≤ y ≤ uy, x ∈ Zm, y ∈ Zn},

where ω is some probability distribution in a suitable probability space and where f is a convex
function of the form

fω(x, y) :=
s

∑

j=1

fω
j

(

c⊺j x+ d⊺j y
)

in which each fω
j : R→ R is a convex function.

Discretizing the probability distribution using N scenarios, we obtain the following convex integer
minimization problem

min

(

N
X

i=1

f
(i)

“

x, y
(i)

”

: Tx+Wy
(i)

= b
(i)
, 0 ≤ x ≤ ux, 0 ≤ y

(i)
≤ u

(i)
y , x ∈ Zm

, y
(i)

∈ Zn
, i = 1, . . . , N

)

,

where we have

f (i)(x, y) :=

s
∑

j=1

f
(i)
j

(

c⊺j x+ d⊺j y
)

for given convex functions f
(i)
j . Note that fixing the first-stage decision x would decompose the

optimization problem into N simpler convex problems

min
{

f (i)
(

x, y(i)
)

: Ax(i) = b(i), 0 ≤ y(i) ≤ u(i)
y , y(i) ∈ Zn

}

, i = 1, . . . , N,

which could be solved independently. However, the problem of finding a first-stage decision x with
smallest overall costs would still remain to be solved.

Lemma 12 (Results from [10])

• A vector (v, w1, . . . , wN ) is in the kernel of the matrix

[T,W ]
(N)

:=











T W 0 · · · 0
T 0 W · · · 0
...

. . .

T 0 0 · · · W











if and only if (v, wi) ∈ ker
(

[T,W ]
(1)

)

for all i, that is, if Tv +Wwi = 0 for all i.

• The Graver bases for the matrices [T,W ]
(N)

decompose into a finite number of first-stage
and second-stage building blocks that are independent on N .
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• For any given linear objective, any given right-hand side vector and any non-optimal feasible
solution z0, an improving vector to z0 can be reconstructed from the building blocks in time
linear in the number N of scenarios.

Note that this finiteness result from [10] does not imply that the Graver basis of [T,W ]
(N)

is of
polynomial size in N . In fact, one can easily construct an exponential size counter-example. Before
we present the main result of this section, let show that there exists a polynomial time optimality
certificate also for convex 2-stage stochastic integer minimization problems of the type above, if
the matrices T and W are kept fix. For this, let C denote the s×m matrix with rows c1, . . . , cs,
and let D denote the s× n matrix with rows d1, . . . , ds.

Lemma 13 The Graver bases of the matrices

[T,W,C,D]
(N)

:=





























T W
T W
...

. . .

T W
C D Is
C D Is
...

. . .
. . .

C D Is





























decompose into a finite number of first-stage and second-stage building blocks that are independent
on N .

For any given convex objective, any given right-hand side vector and any non-optimal feasible
solution z0, an improving vector to z0 can be reconstructed from the building blocks in time linear
in the number N of scenarios.

Proof. To prove our first claim, we rearrange blocks within the matrix [T,W,C,D]
(N)

as follows:























T W 0
C D Is
T W 0
C D Is
...

. . .

T W 0
C D Is























=

[(

T
C

)

,

(

W 0
D Is

)](N)

,

which is the matrix of a 2-stage stochastic integer program with N scenarios and fixed matrices
( T
C ) and

(

W 0
D Is

)

. Hence, its Graver basis consists out of a constant number of building blocks
independent on N . This proves the first claim.

To prove the second claim, note that the results from [9, 13] show that the Graver basis of

[T,W,C,D]
(N)

projected down onto the variables corresponding to T and W columns gives im-
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proving directions for non-optimal solutions z0 to

min

{

N
∑

i=1

f (i)
(

x, y(i)
)

: Tx+Wy(i) = b(i), 0 ≤ x ≤ ux, 0 ≤ y ≤ uy, x ∈ Zm, y ∈ Zn, i = 1, . . . , N

}

.

Thus, these directions consist out of only a constant number of building blocks independent on N .
Let z = (x, y(1), . . . , y(N)) be a feasible solution and let g = (v, w(1), . . . , w(N)) be an augmenting
vector formed out of the constant number of first-stage and second-stage building blocks. To be an
improving direction, g must satisfy the following constraints:

• T (x+ v) +W (y(i) + w(i)) = b(i), i = 1, . . . , N ,

• 0 ≤ x+ v ≤ ux,

• 0 ≤ y(i) + w(i) ≤ u
(i)
y , i = 1, . . . , N ,

•
∑N

i=1 f
(i)

(

x+ y, y(i) + w(i)
)

<
∑N

i=1 f
(i)

(

x, y(i)
)

.

For each of the finitely many first-stage building blocks perform the following test: If 0 ≤ x+v ≤ ux,
try to find suitable second-stage building blocks satisfying the remaining constraints, which for fixed
v simplify to

• Tv +Ww(i) = 0, i = 1, . . . , N ,

• 0 ≤ y(i) + w(i) ≤ u
(i)
y , i = 1, . . . , N ,

•
∑N

i=1 f
(i)

(

x+ v, y(i) + w(i)
)

<
∑N

i=1 f
(i)

(

x, y(i)
)

.

For fixed v, this problem decomposes into N independent minimization problems:

min
{

f (i)
(

x+ v, y(i) + w(i)
)

: Tv +Ww(i) = 0, 0 ≤ y(i) + w(i) ≤ u(i)
y

}

, i = 1, . . . , N.

If for those optimal values
∑N

i=1 f
(i)

(

x+ v, y(i) + w(i)
)

<
∑N

i=1 f
(i)

(

x, y(i)
)

holds, we have found

an improving vector g = (v, w(1), . . . , w(N)) for z0. If one of these minimization problems is in-

feasible or if
∑N

i=1 f
(i)

(

x+ v, y(i) + w(i)
)

≥
∑N

i=1 f
(i)

(

x, y(i)
)

, then no augmenting vector for z0
can be constructed using the first-stage building block v. If for no first-stage building block v, an
augmenting vector can be constructed z0 must be optimal. If there was an augmenting vector for z0
with some first-stage building block v, this vector or even a better augmenting vector would have
been constructed by the procedure above when the first-stage building block v was considered. �

Note that the augmenting vector constructed in the proof of the previous lemma need not be a
Graver basis element (it may not be minimal), but every Graver basis element could be constructed,
guaranteeing the optimality certificate. It remains to show how to construct a greedy augmentation
vector from the building blocks from the Graver basis. Note that the procedure in the previous proof
constructs an augmenting vector also for a fixed step length α. To compute a greedy augmentation
vector, however, one has to allow α to vary. But then, the minimization problem does not decompose
into N independent simpler problems. It is this difficulty that enforces us to restrict the set of
possible convex functions.
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Definition 14 We call a convex function f : Rm+n → R that maps Zm+n to Z splittable, if
for all fixed vectors x ∈ Zm, y, g1, g2 ∈ Zn, and for all finite intervals [l, u] ⊆ R, there exists
polynomially many (in the encoding length of the problem data) intervals I1, . . . , Ir such that

• [l, u] =
r
⋃

i=1

Ir,

• Ii ∩ Ij ∩ Z = ∅ for all 1 ≤ i < j ≤ r, and

• for each j = 1, . . . , r, either f(x, y + αg1) ≤ f(x, y + αg2) or f(x, y + αg1) ≥ f(x, y + αg2)
holds for all α ∈ Ij .

Note that convex polynomials of fixed maximal degree k are splittable, as f(x, y+αg1)−f(x, y+αg2)
switches its sign at most k times. Hence each interval [l, u] can be split into at most k+1 intervals
with the desired property. With the notion of splittable convex functions, we can now state and
prove the main theorem of this section.

Theorem 15 Let T , W , C, D be fixed integer matrices of appropriate dimensions. Then the
following holds.

(a) For any choice of the right-hand side vector b, an initial feasible solution z0 to

min

(

N
X

i=1

f
(i)

“

x, y
(i)

”

: Tx+Wy
(i)

= b
(i)
, 0 ≤ x ≤ ux, 0 ≤ y

(i)
≤ u

(i)
y , x ∈ Z

m
, y

(i)
∈ Z

n
, i = 1, . . . , N

)

,

can be constructed in time polynomial in N and in the encoding length of the input data.

(b) Then, for any choice of splittable convex functions f (i), this solution z0 can be augmented to
optimality in time polynomial in the encoding length of the input data.

Proof. Let us prove Part (b) first. This proof follows the main idea behind the proof of Lemma 13.
Let z = (x, y(1), . . . , y(N)) be a feasible solution and let g = (v, w(1), . . . , w(N)) be an augmenting
vector formed out of the constant number of first-stage and second-stage building blocks. Again,
for fixed v, we wish to consider each scenarios independently. For this, note that the possible step
length α ∈ Z+ is bounded from above by some polynomial size bound uα, since our feasible region
is a polytope. Since the convex functions f (i) are splittable, we can for each scenario partition the
interval [0, uα] into polynomially subintervals Ii,1, . . . , Ii,ri such that for each interval Ii,j there is
either no building block leading to a feasible solution or a well-defined building block wi,j with
Tv+Wwi,j = 0 and 0 ≤ y(i) +αwi,j ≤ u(i) that minimizes f (i)(x+ v, y(i) + αwi,j) for all α ∈ Ii,j .

Taking the common refinement of all intervals Ii,j , i = 1, . . . , N , j = 1, . . . , ri, one obtains poly-
nomially many intervals J1, . . . , Jt, such that for each interval Ji and for all α ∈ Ji, there is a
well-defined building block for each scenario minimizing the function value. For this fixed vec-
tor g = (v, w(1), . . . , w(N)) we then compute the best α ∈ Ji, and then compare these values
∑N

i=1 f
(i)

(

x+ αv, y(i) + αw(i)
)

to find the desired greedy augmentation vector. Applying Theo-
rem 6, this proves Part (b).

11



Finally, let us prove Part (a). For this, introduce nonnegative integer slack-variables into the
second-stages to obtain a linear IP with problem matrix

[T, (W, Id,−Id)]
(N)

:=











T W Id −Id 0 0 0 · · · 0
T 0 0 0 W Id −Id · · · 0
...

. . .

T 0 0 0 0 0 0 · · · W Id −Id











whose associated Graver basis is formed out of only constantly many first- and second-stage building
blocks. Using this extended formulation, we may immediately write down a feasible solution. Using

only greedy directions from the Graver basis of [T, (W, Id,−Id)]
(N)

, we can minimize the sum of
all slack-variables in polynomially many augmentation steps. Part (b) now implies that an optimal
solution to this extended problem can be found in polynomial time. If all slack-variables are 0, we
have found a feasible solution to our intial problem, otherwise the initial problem is infeasible. �

Let us conclude with the remark that these polynomiality results for convex 2-stage stochastic
integer minimization can be extended to the multi-stage situation by applying the finiteness results
from [2].

4 Some Applications

Consider the following general nonlinear problems over an arbitrary set F ⊆ Zn of feasible solutions:

Separable convex minimization: Find a feasible point x ∈ F minimizing a separable convex
cost function f(x) :=

∑n

i=1 fi(xi) with each fi a univariate convex function. It generalizes
standard linear optimization with cost f(x) =

∑n

i=1 c
⊺

i xi recovered with fi(xi) := c⊺i xi for
some costs ci.

Minimum lp-distance: Find a feasible point x ∈ F minimizing the lp-distance to a partially
specified “goal” point x̄ ∈ Zn. More precisely, given 1 ≤ p ≤ ∞ and the restriction x̄I :=
(x̄i : i ∈ I) of x̄ to a subset I ⊆ {1, . . . , n} of the coordinates, find x ∈ F minimizing the

lp-distance ‖xI−x̄I‖p := (
∑

i∈I |xi−x̄i|p)
1

p for 1 ≤ p <∞ and ‖xI−x̄I‖∞ := maxi∈I |xi−x̄i|
for p =∞.

Note that a common special case of the above is the natural problem of lp-norm minimization over
F , min{‖x‖p : x ∈ F}; in particular, the l∞-norm minimization problem is the min-max problem
min{maxni=1 |xi| : x ∈ F}.

In our discussion of N -fold systems below it will be convenient to index the variable vector as
x = (x1, . . . , xN ) with each block indexed as xi = (xi,1, . . . , xi,n), i = 1, . . . , N .

We have the following corollary of Theorem 11, which will be used in the applications to follow.
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Corollary 16 Let A and B be fixed integer matrices of compatible sizes. Then there is an algorithm
that, given any positive integer N , right-hand sides bi, and upper bound vectors ui, of suitable
dimensions, solves the above problems over the following set of integer points in an N -fold program

F = {x = (x1, . . . , xN ) ∈ ZN×n :

N
∑

i=1

Bxi = b0, Axi = bi, 0 ≤ xi ≤ ui, i = 1, . . . , N} (2)

in time which is polynomial in N and in the binary encoding length of the rest of the input, as
follows:

1. For i = 1, . . . , N and j = 1, . . . , n, let fi,j denote convex univariate functions. Moreover, let

f(x) :=
∑N

i=1

∑n
j=1 fi,j(xi,j) be given by a comparision oracle. Then the algorithm solves the

separable convex minimization problem

min







N
∑

i=1

n
∑

j=1

fi,j(xi,j) : x ∈ F







.

2. Given any I ⊆ {1, . . . , N} × {1, . . . , n}, any partially specified integer point x̄I := (xi,j :
(i, j) ∈ I), and any integer 1 ≤ p < ∞ or p = ∞, the algorithm solves the minimum
lp-distance problem

min {‖xI − x̄I‖p : x ∈ F} .

In particular, the algorithm solves the lp-norm minimization problem min{‖x‖p : x ∈ F}.

Proof. Consider first the separable convex minimization problem. Then this is just the special
case of Theorem 11 with cj := 1j the standard j-th unit vector in Zn for j = 1, . . . , n and ci := 0
in Zn for i = 1, . . . , N . The objective function in Theorem 11 then becomes the desired objective,

N
∑

i=1

f i(xi) =

N
∑

i=1

n
∑

j=1

fi,j(c
⊺

j x
i) + cixi =

N
∑

i=1

n
∑

j=1

fi,j(xi,j) .

Next consider the minimum lP -distance problem. Consider first an integer 1 ≤ p < ∞. Then we
can minimize the integer-valued p-th power ‖x‖pp instead of the lp-norm itself. Define

fi,j(xi,j) :=

{

|xi,j − x̄i,j |p, if (i, j) ∈ I;
0, otherwsie.

With these fi,j , the objective in the separable convex minimization becomes the desired objective,

N
∑

i=1

n
∑

j=1

fi,j(xi,j) =
∑

(i,j)∈I

|xi,j − x̄i,j |
p = |xI − x̄I |

p
p .

Next, consider the case p =∞. Let w := max{|ui,j | : i = 1, . . . , N, j = 1, . . . , n} be the maximum
upper bound on any variable. We may assume w > 0 else F ⊆ {0} and the integer program is
trivial. Choose a positive integer q satisfying q log(1+(2w)−1) > log(Nn). Now solve the minimum
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lq-distance problem and let x∗ ∈ F be an optimal solution. We claim that x∗ also minimizes the
l∞-distance to x̄. Consider any x ∈ F . By standard inequalities between the l∞ and lq norms,

‖x∗
I − x̄I‖∞ ≤ ‖x∗

I − x̄I‖q ≤ ‖xI − x̄I‖q ≤ (Nn)
1

q ‖xI − x̄I‖∞ .

Therefore

‖x∗
I − x̄I‖∞ − ‖xI − x̄I‖∞ ≤ ((Nn)

1

q − 1)‖xI − x̄I‖∞ ≤ ((Nn)
1

q − 1)2w < 1

where the last inequality holds by the choice of q. Since ‖x∗
I − x̄I‖∞ and ‖xI − x̄I‖∞ are integers

we find that indeed ‖x∗
I − x̄I‖∞ ≤ ‖xI − x̄I‖∞ holds for all x ∈ F and the claim follows. �

4.1 Congestion-avoiding (multi-way) transportation and routing

The classical (discrete) transportation problem is the following. We wish to transport commodities
(in containers or bins) on a traffic network (by land, sea or air), or route information (in packets)
on a communication network, from n suppliers to N customers. The demand by customer i is di
units and the supply from supplier j is sj units. We need to determine the number xi,j of units to
transport to customer i from supplier j on channel i← j subject to supply-demand requirements
and upper bounds xi,j ≤ ui,j on channel capacity so as to minimize total delay or cost. The classical

approach assumes a channel cost ci,j per unit flow, resulting in linear total cost
∑N

i=1

∑n

j=1 ci,jxi,j .
But due to channel congestion when subject to heavy traffic or heavy communication load, the
transportation delay or cost on a channel are actually a nonlinear convex function of the flow
over it, such as fi,j(xi,j) = ci,j |xi,j |αi,j for suitable αi,j > 1, resulting in nonlinear total cost
∑

i,j fi,j(xi,j), which is much harder to minimize.

It is often natural that the number of suppliers is small and fixed while the number of customers is
very large. Then the transportation problem is anN -fold integer programming problem. To see this,
index the variable vector as x = (x1, . . . , xN ) with xi = (xi,1, . . . , xi,n) and likewise for the upper
bound vector. Let bi := di for i = 1, . . . , N and let b0 := (s1, . . . , sn). Finally, let A = (1, . . . , 1)
be the 1 × n matrix with all entries equal to 1 and let B be the n × n identity matrix. Then the
N -fold constraints Axi = bi, i = 1, . . . , N and B(

∑N
i=1 x

i) = b0 represent, respectively the demand
and supply constraints. The feasible set in (2) then consists of the feasible transportations and the
solution of the congestion-avoiding transportation problem is provided by Corollary 16 part 1. So
we have:

Corollary 17 Fix the number of suppliers and let fi,j, i = 1, . . . , N , j = 1, . . . , n, denote convex

univariate functions. Moreover, let f(x) :=
∑N

i=1

∑n

j=1 fi,j(xi,j) be given by a comparision oracle.
Then the congestion-avoiding transportation problem can be solved in polynomial time.

This result can be extended to multi-way (high-dimensional) transportation problems as well. In
the 3-way line-sum transportation problem, the set of feasible solutions consists of all nonnegative
integer L×M ×N arrays with specified line-sums and upper bound (capacity) constraints,

F := {x ∈ ZL×M×N :
∑

i

xi,j,k = rj,k ,
∑

j

xi,j,k = si,k ,
∑

k

xi,j,k = ti,j , 0 ≤ xi,j,k ≤ ui,j,k } .

(3)
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If at least two of the array-size parameters L,M,N are variable then even the classical linear
optimization problem over F is NP-hard [5]. In fact, remarkably, every integer program is a 3 ×
M × N transportation program for some M and N [6]. But when both L and M are relatively
small and fixed, the resulting problem over “long” arrays, with a large and variable number N of
layers, is again an N -fold program. To see this, index the variable array as x = (x1, . . . , xN ) with
xi = (x1,1,i, . . . , xL,M,i) and likewise for the upper bound vector. Let A be the (L + M) × LM
incidence matrix of the complete bipartite graph KL,M and let B be the LM × LM identity
matrix. Finally, suitably define the right-hand side vectors bh, h = 0, . . . , N in terms of the given
line sums rj,k, si,k, and ti,j . Then the n-fold constraint B(

∑N

h=1 x
h) = b0 represents the line-sum

constraints where summation over layers occurs, whereas Axh = bh, h = 1, . . . , N , represent the
line-sum constraints where summations are within a single layer at a time. Then we can minimize
in polynomial time any separable convex cost function

∑L

i=1

∑M

j=1

∑N

k=1 fi,j,k(xi,j,k) over the set
of feasible transportations F in (3). So we have:

Corollary 18 Fix any L and M and let fi,j,k, i = 1, . . . , L, j = 1, . . . ,M , k = 1, . . . , N , denote

convex univariate functions. Moreover, let f(x) :=
∑L

i=1

∑M

j=1

∑N

k=1 fi,j,k(xi,j,k) be given by a
comparision oracle. Then the congestion-avoiding 3-way transportation problem can be solved in
polynomial time.

Even more generally, this result holds for “long” d-way transportations of any fixed dimension d
and for any hierarchical sum constraints, see Section 4.3 below for the precise definitions.

4.2 Error-correcting codes

Linear-algebraic error correcting codes generalize the “check-sum” idea as follows: a message to be
communicated on a noisy channel is arranged in a vector x. To allow for error correction, several
sums of subsets of entries of x are communicated as well. Multi-way tables provide an appealing way
of organizing the check-sum protocol. The sender arranges the message in a multi-wayM1×· · ·×Md

array x and sends it along with the sums of some of its lower dimensional sub-arrays (margins).
The receiver obtains an array x̄ with some entries distorted on the way; it then finds an array
x̂ having the specified check-sums (margins), that is lp-closest to the received distorted array x̄,
and declares it as the retrieved message. For instance, when working over the {0, 1} alphabet, the
useful Hamming distance is precisely the l1-distance. Note that the check-sums might be distorted
as well; to overcome this difficulty, we determine ahead of time an upper bound U on all possible
check-sums, and make it a fixed part of the communication protocol; then we blow each array to
size (M1 +1)× · · · × (Md +1), and fill in the new “slack” entries so as to sum up with the original
entries to U .

To illustrate, consider 3-way arrays of format L×M×N (already augmented with slack variables).
Working over alphabet {0, . . . , u}, define upper bounds ui,j,k := u for original message variables
and ui,j,k := U for slack variable. Then the set of possible messages that the receiver has to choose
from is

F := {x ∈ ZL×M×N :
∑

i

xi,j,k =
∑

j

xi,j,k =
∑

k

xi,j,k = U , 0 ≤ xi,j,k ≤ ui,j,k } . (4)
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Choosing L and M to be relatively small and fixed, F is again the set of integer points in an N -
fold system. Corollary 16 part 2 now enables the efficient solution of the error-correcting decoding
problem

min{‖x̂− x̄‖p : x̂ ∈ F} .

Corollary 19 Fix L,M . Then 3-way lp error-correcting decoding can be done in polynomial time.

4.3 Hierarchically-constrained multi-way arrays

The transportation and routing problem, as well as the error-correction problem, have very broad
and useful generalizations, to arrays of any dimension and to any hierarchical sum constraints. We
proceed to define such systems of arrays.

Consider d-way arrays x = (xi1,...,id) of size M1 × · · · ×Md. For any d-tuple (i1, . . . , id) with ij ∈
{1, . . . ,Mj}∪{+}, the corresponding margin xi1,...,id is the sum of entries of x over all coordinates
j with ij = +. The support of (i1, . . . , id) and of xi1,...,id is the set supp(i1, . . . , id) := {j : ij 6= +}
of non-summed coordinates. For instance, if x is a 4 × 5 × 3 × 2 array then it has 12 margins
with support H = {1, 3} such as x3,+,2,+ =

∑5
i2=1

∑2
i4=1 x3,i2,2,i4 . Given a family H of subsets of

{1, . . . , d} and margin values vi1,...,id for all tuples with support in H, consider the set of integer
nonnegative and suitably upper-bounded arrays with these margins,

FH :=
{

x ∈ ZM1×···×Md : xi1,...,id = vi1,...,id , supp(i1, . . . , id) ∈ H , 0 ≤ xi1,...,id ≤ ui1,...,id

}

.

The congestion-avoiding transportation problem over FH is to find x ∈ FH minimizing a given
separable convex cost

∑

i1,...,id
fi1,...,id(xi1,...,id). The error-correcting decoding problem over FH is

to estimate an original message as x̂ ∈ FH minimizing a suitable lp-distance ‖x̂− x̄‖p to a received
message x̄.

Again, for long arrays, that is, of format M1× · · ·×Md−1×N with d and M1, . . . ,Md−1 fixed and
only the length (number of layers) N variable, the set FH is the set of feasible points in an N -fold
systems and, as a consequence of Corollary 16, we can solve both problems in polynomial time.

Corollary 20 Fix any d,M1, . . . ,Md−1 and family H of subsets of {1, . . . , d}. Then congestion-
avoiding transportation and error-correcting decoding over FH can be solved in polynomial time for
any array length Md := N and any margin values vi1,...,id for all tuples (i1, . . . , id) with support in
H.

5 Proofs of Theorems 5 and 6

In this section we finally prove Theorems 5 and 6. For this, we employ the following fact.

Lemma 21 (Theorem 3.1 in Ahuja et al. [1]) Let H be the difference between maximum and
minimum objective function values of an (integer valued) optimization problem.
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Suppose that fk is the objective function value of some solution of a minimization problem at
the k-th interation of an algorithm and f∗ is the minimum objective function value. Furthermore,
suppose that the algorithm guarantees that for every iteration k,

(fk − fk+1) ≥ β(fk − f∗)

(i.e., the improvement at iteration k+1 is at least β times the total possible improvement) for some
constant 0 < β < 1 (which is independent of the problem data). Then the algorithm terminates in
O((logH)/β).

5.1 Proof of Theorem 5

Let ∆ denote the least common multiple of all non-vanishing maximal subdeterminants of A. Note
that the encoding length log∆ is polynomially bounded in the encoding lengths of the input data
A, u, b and c. Hence, the objective function values of two vertices are either the same or differ by
at least 1/∆.

Let f0 = ∆ · c⊺z0 denote the normalized objective value of the initially given feasible solution
and by f1, f2, . . . denote the normalized objective values of the vertices z1, z2, . . . that we reach at
the end of the second steps of the augmentation procedure. Note that the difference H between
maximum and minimum normalized objective function values of (LP)A,u,b,f has an encoding length
logH that is polynomially bounded in the encoding lengths of the input data A, u, b and c. We
now show that

(fk − fk+1) ≥ β(fk − f∗)

holds for 0 < β = 1/n < 1 and conclude by Lemma 21, that we only have to enumerateO((logH)n),
that is polynomially many, vertices.

Cosider the vector z∗ − zk ∈ ker(A). There is some orthant Oj such that z∗ − zk ∈ ker(A) ∩ Oj .
Hence, we can write

z∗ − zk =

n
∑

i=1

αigi

for some αi ∈ R+ and gi ∈ C(A) ∩Oj , i = 1, . . . , n. As αigi has the same sign pattern as zk − z∗,
one can easily check that the components of zk +αigi lie between the components of zk and of z∗.
Hence they are nonnegative. As gi ∈ ker(A), we have Agi = 0 and thus A(zk + αigi) = Azk = b
for any choice of i = 1, . . . , n. Consequently, zk + αigi is a feasible solution for any choice of
i = 1, . . . , n. Finally, we have

∆ · c⊺(zk − z∗) =

n
∑

i=1

∆ · c⊺(−αigi) =

n
∑

i=1

∆ · c⊺(zk − (zk + αigi))

from which we conclude that there is some index i0 such that

∆ · c⊺(zk− (zk+αi0gi0)) = ∆ · c⊺(−αi0gi0) ≥
1

n

n
∑

i=1

∆ · c⊺(−αigi) =
1

n
∆ · c⊺(zk− z∗) =

1

n
(fk− f∗).
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Note that a greedy choice for an augmentating vector cannot make a smaller augmentation step
than the vector αi0gi0 . Thus,

fk − fk+1 ≥ ∆ · c⊺(zk − (zk + αi0gi0)) ≥
1

n
(fk − f∗).

This proves Part (a).

The proof of Part (b) is is nearly literally the same. Clearly, in the integer situation, we may choose
∆ = 1. If z1, z2, . . . denote the vectors that we reach from our initial feasible solution z0 via greedy
augmentation steps, we only have to be careful about the choice of β. In the integer situation, we
need to choose β = 1/(2n− 2), since for the integer vector z∗ − zk ∈ ker(A) ∩ Oj at most 2n− 2
vectors from the Hilbert basis of Cj = ker(A) ∩ Oj are needed to represent each lattice point in
Cj ∩ Zn as a nonnegative integer linear combination of elements in G(A) ∩Oj [16]. Thus, we need
to apply O((logH)(2n− 2)) = O((logH)n) augmentation steps, a number being polynomial in the
encoding length. �

5.2 Proof of Theorem 6

In [9, 13], it was shown that G(A,C) allows a representation

(z∗ − zk,−C(z∗ − zk)) =

2(n+s)−2
∑

i=1

αi(gi,−Cgi),

where each αi ∈ Z+ and where each (gi,−Cgi) lies in the same orthant as (z∗ − zk,−C(z∗− zk)).
It follows again from the results in [16] that at most 2(n+s)−2 summands are needed. Similarly to
the proof of Theorem 5, we can already conclude from this representation that zk +αigi is feasible
for all i = 1, . . . , 2(n+ s)− 2.

Moreover, in [13] it was shown that for such a representation superadditivity holds, that is,

f̄(z∗)− f̄(zk) ≥

2(n+s)−2
∑

i=1

[f̄(zk + αigi)− f̄(zk)]

and thus, rewritten,

f̄k − f̄∗ = f̄(zk)− f(z∗) ≤

2(n+s)−2
∑

i=1

[f̄(zk)− f̄(zk + αigi)].

Therefore, there is some index i0 such that

f̄k − f̄k+1 = f̄(zk)− f̄(zk + αi0gi0) ≥
1

2(n+ s)− 2
[f̄(zk)− f̄(z∗)] =

1

2(n+ s)− 2
(f̄k − f̄∗),

and the result follows from Lemma 21. �
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