Skip to main content
Log in

A polynomial oracle-time algorithm for convex integer minimization

  • FULL LENGTH PAPER
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. We extend these results to convex N-fold integer minimization problems and to convex 2-stage stochastic integer minimization problems. Finally, we present some applications of convex N-fold integer minimization problems for which our approach provides polynomial time solution algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ahuja R.K., Magnanti T.L., Orlin J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc., New Jersey (1993)

    Google Scholar 

  2. Aschenbrenner M., Hemmecke R.: Finiteness theorems in stochastic integer programming. Found. Comput. Math. 7, 183–227 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birge J.R., Louveaux F.V.: Intorduction to Stochastic Programming. Springer, New York (1997)

    Google Scholar 

  4. De Loera, J.A., Hemmecke, R., Onn, S., Weismantel, R.: N-fold integer programming. Discrete Optim. (to appear)

  5. De Loera J.A., Onn S.: The complexity of three-way statistical tables. SIAM J. Comput. 33, 819–836 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. De Loera J.A., Onn S.: All linear and integer programs are slim 3-way transportation programs. SIAM J. Optim. 17, 806–821 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Graver J.E.: On the foundation of linear and integer programming I. Math. Program. 9, 207–226 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hemmecke R.: On the positive sum property and the computation of Graver test sets. Math. Program. 96, 247–269 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hemmecke, R.: Test Sets for Integer Programs with Z-convex Objective Function. e-print available from http://front.math.ucdavis.edu/math.CO/0309154, 2003

  10. Hemmecke R., Schultz R.: Decomposition of test sets in stochastic integer programming. Math. Program. 94, 323–341 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoşten S., Sullivant S.: Finiteness theorems for Markov bases of hierarchical models. J. Combinat. Theory Ser. A 114, 311–321 (2007)

    Article  MATH  Google Scholar 

  12. Louveaux F.V., Schultz R.: Stochastic Integer Programming. In: Ruszczynski, A., Shapiro, A. (eds) Handbooks in Operations Research and Management Science, 10: Stochastic Programming, pp. 213–266. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  13. Märkert A., Schultz R.: On deviation measures in stochastic integer programming. Oper. Res. Lett. 33, 441–449 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Murota K., Saito H., Weismantel R.: Optimality criterion for a class of nonlinear integer programs. Oper. Res. Lett. 32, 468–472 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Römisch W., Schultz R.: Multistage stochastic integer programming: an introduction. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds) Online Optimization of Large Scale Systems, pp. 581–600. Springer, Berlin (2001)

    Google Scholar 

  16. Rosenthal R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)

    Article  MATH  Google Scholar 

  17. Schultz R.: Risk aversion in two-stage stochastic integer programming. In: Dantzig, G.B., Hinfanger, G. (eds) Stochastic Programming., Kluwer, Dordrecht (2006)

    Google Scholar 

  18. Schulz, A., Weismantel, R.: An oracle-polynomial time augmentation algorithm for integer programming. In: Proc. of the 10th ACM-SIAM Symposium on Discrete Algorithms, Baltimore, pp. 967–968 (1999)

  19. Sebö, A.: Hilbert bases, Caratheodory’s Theorem and combinatorial optimization. In: Proceedings of the IPCO conference,Waterloo, Canada, pp. 431–455 (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Hemmecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmecke, R., Onn, S. & Weismantel, R. A polynomial oracle-time algorithm for convex integer minimization. Math. Program. 126, 97–117 (2011). https://doi.org/10.1007/s10107-009-0276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0276-7

Mathematics Subject Classification (2000)