Abstract
In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. We extend these results to convex N-fold integer minimization problems and to convex 2-stage stochastic integer minimization problems. Finally, we present some applications of convex N-fold integer minimization problems for which our approach provides polynomial time solution algorithms.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahuja R.K., Magnanti T.L., Orlin J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc., New Jersey (1993)
Aschenbrenner M., Hemmecke R.: Finiteness theorems in stochastic integer programming. Found. Comput. Math. 7, 183–227 (2007)
Birge J.R., Louveaux F.V.: Intorduction to Stochastic Programming. Springer, New York (1997)
De Loera, J.A., Hemmecke, R., Onn, S., Weismantel, R.: N-fold integer programming. Discrete Optim. (to appear)
De Loera J.A., Onn S.: The complexity of three-way statistical tables. SIAM J. Comput. 33, 819–836 (2004)
De Loera J.A., Onn S.: All linear and integer programs are slim 3-way transportation programs. SIAM J. Optim. 17, 806–821 (2006)
Graver J.E.: On the foundation of linear and integer programming I. Math. Program. 9, 207–226 (1975)
Hemmecke R.: On the positive sum property and the computation of Graver test sets. Math. Program. 96, 247–269 (2003)
Hemmecke, R.: Test Sets for Integer Programs with Z-convex Objective Function. e-print available from http://front.math.ucdavis.edu/math.CO/0309154, 2003
Hemmecke R., Schultz R.: Decomposition of test sets in stochastic integer programming. Math. Program. 94, 323–341 (2003)
Hoşten S., Sullivant S.: Finiteness theorems for Markov bases of hierarchical models. J. Combinat. Theory Ser. A 114, 311–321 (2007)
Louveaux F.V., Schultz R.: Stochastic Integer Programming. In: Ruszczynski, A., Shapiro, A. (eds) Handbooks in Operations Research and Management Science, 10: Stochastic Programming, pp. 213–266. Elsevier Science, Amsterdam (2003)
Märkert A., Schultz R.: On deviation measures in stochastic integer programming. Oper. Res. Lett. 33, 441–449 (2005)
Murota K., Saito H., Weismantel R.: Optimality criterion for a class of nonlinear integer programs. Oper. Res. Lett. 32, 468–472 (2004)
Römisch W., Schultz R.: Multistage stochastic integer programming: an introduction. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds) Online Optimization of Large Scale Systems, pp. 581–600. Springer, Berlin (2001)
Rosenthal R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)
Schultz R.: Risk aversion in two-stage stochastic integer programming. In: Dantzig, G.B., Hinfanger, G. (eds) Stochastic Programming., Kluwer, Dordrecht (2006)
Schulz, A., Weismantel, R.: An oracle-polynomial time augmentation algorithm for integer programming. In: Proc. of the 10th ACM-SIAM Symposium on Discrete Algorithms, Baltimore, pp. 967–968 (1999)
Sebö, A.: Hilbert bases, Caratheodory’s Theorem and combinatorial optimization. In: Proceedings of the IPCO conference,Waterloo, Canada, pp. 431–455 (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hemmecke, R., Onn, S. & Weismantel, R. A polynomial oracle-time algorithm for convex integer minimization. Math. Program. 126, 97–117 (2011). https://doi.org/10.1007/s10107-009-0276-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-009-0276-7