Skip to main content
Log in

Efficient branch-and-bound algorithms for weighted MAX-2-SAT

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

MAX-2-SAT is one of the representative combinatorial problems and is known to be NP-hard. Given a set of m clauses on n propositional variables, where each clause contains at most two literals and is weighted by a positive real, MAX-2-SAT asks to find a truth assignment that maximizes the total weight of satisfied clauses. In this paper, we propose branch-and-bound exact algorithms for MAX-2-SAT utilizing three kinds of lower bounds. All lower bounds are based on a directed graph that represents conflicts among clauses, and two of them use a set covering representation of MAX-2-SAT. Computational comparisons on benchmark instances disclose that these algorithms are highly effective in reducing the number of search tree nodes as well as the computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alsinet, T., Manya, F., Planes, J.: Improved branch and bound algorithms for Max-SAT. In: Sixth International Conference on Theory and Applications of Satisfiability Testing, pp. 408–415 (2003)

  2. Alsinet T., Manyà F., Planes J.: A Max-SAT solver with lazy data structures. In: Lemaître, C., Reyes, C.A., Gonzalez, J.A. (eds) Advances in Artificial Intelligence—IBERAMIA 2004. Lecture Notes in Artificial Intelligence, vol. 3315, pp. 334–342. Springer, Heidelberg (2004)

    Google Scholar 

  3. Amini M.M., Alidaee B., Kochenberger G.A.: A scatter search approach to unconstrained quadratic binary programs. In: Corne, D., Dorigo, M., Glover, F. (eds) New Ideas in Optimization, pp. 317–329. McGraw-Hill, London (1999)

    Google Scholar 

  4. Aspvall B., Plass M.R., Tarjan R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inf. Process. Lett. 8, 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bansal, N., Raman, V.: Upper bounds for MaxSat: Further improved. In: ISAAC ’99: Proceedings of the 10th International Symposium on Algorithms and Computation, pp. 247–258. Springer-Verlag, London (1999)

  6. Bonami P., Minoux M.: Exact MAX-2SAT solution via lift-and-project closure. Oper. Res. Lett. 34, 387–393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borchers B., Furman J.: A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT problems. J. Combin. Optim. 2, 299–306 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boros, E.: Private communication via e-mail exchange (2007)

  9. Boros, E., Hammer, P.L.: A max-flow approach to improved roof-duality in quadratic 0–1 minimization. RUTCOR Research Report RRR 15-1989, RUTCOR (1989)

  10. Boros E., Hammer P.L.: Pseudo-Boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boros E., Crama Y., Hammer P.L.: Upper-bounds for quadratic 0–1 maximization. Oper. Res. Lett. 9, 73–79 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boros E., Crama Y., Hammer P.L.: Chvátal cuts and odd cycle inequalities in quadratic 0–1 optimization. SIAM J. Discrete Math. 5, 163–177 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boros, E., Hammer, P.L., Tavares, G.: Preprocessing of unconstrained quadratic binary optimization. RUTCOR Research Report RRR 10-2006, RUTCOR (2006)

  14. Boros E., Hammer P.L., Sun R., Tavares G.: A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (QUBO). Discrete Optim. 5, 501–529 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bourjolly, J.-M., Hammer, P.L., Pulleyblank, W.R., Simeone, B.: Combinatorial methods for bounding quadratic pseudo-Boolean functions. RUTCOR Research Report RRR 27-1989, RUTCOR (1989)

  16. Bourjolly J.-M., Hammer P.L., Pulleyblank W.R., Simeone B.: Boolean-combinatorial bounding of maximum 2-satisfiability. In: Balci, O., Sharda, R., Zenios, S.A. (eds) Computer Science and Operations Research: New Developments in their Interfaces, pp. 23–42. Pergamon Press, Oxford (1992)

    Google Scholar 

  17. Cherkassky B.V., Goldberg A.V.: On implementing the push-relabel method for the maximum flow problem. Algorithmica 19, 390–410 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  19. Davis M., Putnam H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Givry S., Larrosa J., Meseguer P., Schiex T.: Solving Max-SAT as weighted CSP. In: Rossi, F. (eds) Principles and Practice of Constraint Programming (CP 2003). Lecture Notes in Computer Science, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. de Klerk E., Warners J.P.: Semidefinite programming approaches for MAX-2-SAT and MAX-3-SAT: Computational perspectives. In: Pardalos, P.M., Migdalas, A., Burkard, R.E. (eds) Combinatorial and Global Optimization. Series on Applied Optimization, vol. 14, pp. 161–176. World Scientific Publishers, Singapore (2002)

    Chapter  Google Scholar 

  22. Eén N., Sörensson N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds) Theory and Applications of Satisfiability Testing—SAT 2003. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Google Scholar 

  23. Eén N., Sörensson N.: Translating pseudo-Boolean constraints into SAT. J. Satisfiability Boolean Model. Comput. 2, 1–25 (2006)

    MATH  Google Scholar 

  24. Even S., Itai A., Shamir A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Comput. 5, 691–703 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garey M.R., Johnson D.S., Stockmeyer L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1, 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gilmore P.C., Gomory R.E.: A linear programming approach to the cutting stock problem. Oper. Res. 9, 849–859 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  27. Glover F., Kochenberger G., Alidaee B.: Adaptive memory tabu search for binary quadratic programs. Manage. Sci. 44, 336–345 (1998)

    Article  MATH  Google Scholar 

  28. Glover F., Kochenberger G., Alidaee B., Amini M.: Tabu search with critical event memory: An enhanced application for binary quadratic programs. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 93–109. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  29. Glover F., Alidaee B., Rego C., Kochenberger G.: One-pass heuristics for large-scale unconstrained binary quadratic problems. Eur. J. Oper. Res. 137, 272–287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Goldberg A.V., Tarjan R.E.: A new approach to the maximum-flow problem. J. ACM 35, 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT solver. In: Design Automation and Test in Europe (DATE 2002), pp. 142–149 (2002)

  32. Gramm, J., Niedermeier, R.: Faster exact solutions for MAX2SAT. In: Conference on Algorithms and Complexity, pp. 174–186 (2000)

  33. Hammer P.L., Hansen P., Simeone B.: Roof duality, complementation and persistency in quadratic 0–1 optimization. Math. Program. 28, 121–155 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hansen P., Jaumard B.: Algorithms for the maximum satisfiability problem. Computing 44, 279–303 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Heras F., Larrosa J., Oliveras A.: MiniMaxSAT: a new weighted Max-SAT solver. In: Marques-Silva, J., Sakallah, K.A. (eds) Theory and Applications of Satisfiability Testing—SAT 2007. Lecture Notes in Computer Science, vol. 4501, pp. 41–55. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  36. Hirsch, E.A.: A new algorithm for MAX-2-SAT. In: STACS 2000: 17th Annual Symposium on Theoretical Aspects of Computer Science, pp. 65–73 (2000)

  37. Johnson D.S.: Local optimization and the traveling salesman problem. In: Paterson, M.S. (eds) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 443, pp. 446–461. Springer, Heidelberg (1990)

    Google Scholar 

  38. Joy, S., Mitchell, J.E., Borchers, B.: Solving MAX-SAT and weighted MAX-SAT problems using branch-and-cut. Technical report, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 (1998)

  39. Kirkpatrick S., Selman B.: Critical behavior in the satisfiability of random Boolean expressions. Science 264, 1297–1301 (1994)

    Article  MathSciNet  Google Scholar 

  40. Kochenberger G., Glover F., Alidaee B., Lewis K.: Using the unconstrained quadratic program to model and solve Max 2-SAT problems. Int. J. Oper. Res. 1, 89–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Koga, Y.: Efficient branch-and-bound algorithms for weighted MAX-2-SAT. Master’s thesis, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University (2006)

  42. Li C.-M., Manya F., Planes J.: New inference rules for Max-SAT. J. Artif. Intell. Res. 30, 321–359 (2007)

    MathSciNet  Google Scholar 

  43. Lourenço H.R., Martin O.C., Stützle T.: Iterated local search. In: Glover, F., Kochenberger, G.A. (eds) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Boston (2003)

    Google Scholar 

  44. Luby M., Ragde P.: A bidirectional shortest-path algorithm with good average-case behavior. Algorithmica 4, 551–567 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mahajan Y.S., Fu Z., Malik S.: Zchaff2004: An efficient SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds) Theory and Applications of Satisfiability Testing—SAT 2004. Lecture Notes in Computer Science, vol. 3542, pp. 360–375. Springer, Heidelberg (2005)

    Google Scholar 

  46. Martin O., Otto S.W., Felten E.W.: Large-step Markov chains for the traveling salesman problem. Complex Syst. 5, 299–326 (1991)

    MathSciNet  MATH  Google Scholar 

  47. Merz P., Freisleben B.: Greedy and local search heuristics for unconstrained binary quadratic programming. J. Heuristics 8, 197–213 (2002)

    Article  MATH  Google Scholar 

  48. Miyashiro R., Matsui T.: A polynomial-time algorithm to find an equitable home-away assignment. Oper. Res. Lett. 33, 235–241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Miyashiro R., Matsui T.: Semidefinite programming based approaches to the break minimization problem. Comput. Oper. Res. 33, 1975–1982 (2006)

    Article  MATH  Google Scholar 

  50. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the 39th Design Automation Conference (DAC 2001), pp. 530–535 (2001)

  51. Niedermeier R., Rossmanith P.: New upper bounds for maximum satisfiability. J. Algorithms 36, 63–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Resende M.G.C., Pitsoulis L.S., Pardalos P.M.: Approximate solution of weighted MAX-SAT problems using GRASP. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 35, 393–405 (1997)

    MathSciNet  Google Scholar 

  53. Selman, B., Levesque, H.J., Mitchell, D.: A new method for solving hard satisfiability problems. In: Rosenbloom, P., Szolovits, P. (eds.) Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 440–446. AAAI Press, Menlo Park (1992)

  54. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI’94), pp. 337–343. Seattle (1994)

  55. Shen, H., Zhang, H.: An empirical study of MAX-2-SAT phase transitions. In: LICS’03 Workshop on Typical Case Complexity and Phase Transitions, June (2003)

  56. Shen, H., Zhang, H.: Improving exact algorithms for MAX-2-SAT. In: Eighth International Symposium on Artificial Intelligence and Mathematics, January (2004)

  57. Shen, H., Zhang, H.: Study of lower bound functions for MAX-2-SAT. In: 19th National Conference on Artificial Intelligence (AAAI), pp. 185–190 (2004)

  58. Simeone, B.: A generalized consensus approach to nonlinear 0–1 minimization. Technical Report CORR 38/79, Department of Combinatorics and Optimization, University of Waterloo (1979)

  59. Simeone, B.: Quadratic 0–1 Programming, Boolean Functions, and Graphs. Ph.D. dissertation, Department of Combinatorics and Optimization, University of Waterloo (1979)

  60. Smyth K., Hoos H.H., Stützle T.: Iterated robust tabu search for MAX-SAT. In: Xiang, Y., Brahim, C.-D. Advances in Artificial Intelligence: 16th Conference of the Canadian Society for Computational Studies of Intelligence (AI 2003). Lecture Notes in Artificial Intelligence, vol. 2671, pp. 129–144. Springer, Heidelberg (2003)

  61. Tavares, G.: Max2SatGen: A generator of weighted MAX-2-SAT formulas. RUTCOR, Rutgers University (2005)

  62. Tompkins D.A.D., Hoos H.H.: UBCSAT: An implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds) Theory and Applications of Satisfiability Testing—SAT 2004. Lecture Notes in Computer Science, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

    Google Scholar 

  63. Trick, M.A.: A schedule-then-break approach to sports timetabling. In: PATAT ’00: Selected papers from the Third International Conference on Practice and Theory of Automated Timetabling III, pp. 242–253. Springer, Heidelberg (2001)

  64. Wallace, R.J.: Enhancing maximum satisfiability algorithms with pure literal strategies. In: McCalla, G. (ed.) Advances in Artificial Intelligence: 11th Biennial Conference of the Canadian Society for Computational Studies of Intelligence (AI96). Lecture Notes in Computer Science, vol. 1081 (1996)

  65. Wallace, R.J., Freuder, E.C.: Comparative studies of constraint satisfaction and Davis-Putnam algorithms for maximum satisfiability problems. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 587–615 (1996)

  66. Xing Z., Zhang W.: MaxSolver: An efficient exact algorithm for (weighted) maximum satisfiability. Artif. Intell. 164, 47–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. Yagiura M., Ibaraki T.: Analyses on the 2 and 3-flip neighborhoods for the MAX SAT. J. Combin. Optim. 3, 95–114 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  68. Yagiura M., Ibaraki T.: Efficient 2 and 3-flip neighborhood search algorithms for the MAX SAT: Experimental evaluation. J. Heuristics 7, 423–442 (2001)

    Article  MATH  Google Scholar 

  69. Yannakakis M.: On the approximation of maximum satisfiability. J. Algorithms 17, 475–502 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhang, H.: SATO: An efficient propositional prover. In: Proceedings of the International Conference on Automated Deduction (CADE’97), pp. 272–275 (1997)

  71. Zhang H., Shen H., Manyà F.: Exact algorithms for MAX-SAT. Electronic Notes in Theoretical Computer Science 86(1), 190–203 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsunori Yagiura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibaraki, T., Imamichi, T., Koga, Y. et al. Efficient branch-and-bound algorithms for weighted MAX-2-SAT. Math. Program. 127, 297–343 (2011). https://doi.org/10.1007/s10107-009-0285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0285-6

Mathematics Subject Classification (2000)

Navigation