Skip to main content

Advertisement

Log in

A note on an approximate lagrange multiplier rule

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this note we show that for a large class of optimization problems, the Lagrange multiplier rule can be derived from the approximate multiplier rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beer G.: Topologies on Closed and Closed Convex Sets, Mathematics and its Applications, vol. 268. Kluwer, Netherlands (1993)

    Google Scholar 

  2. Borwein J.M., Zhu Q.J.: Techniques of variational analysis. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 20. Springer, New York (2005)

    Google Scholar 

  3. Burke J.V., Lewis A.S., Overton M.L.: Approximating subdifferentials by random sampling of gradients. Math. Oper. Res. 27, 567–584 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dutta J.: Revisiting the Lagrange multiplier rule. Pac. J. Optim. 2, 501–519 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Dutta, J., Pattanaik, S.R., Théra, M.: An approximate Lagrange multiplier rule, Optimization Online. http://www.optimization-online.org/DB_HTML/2009/06/2310.html

  6. Fabian M.: Subdifferentiability and trustwothiness in the light of a new variational principle of Borwein and Preiss. Acta Univ. Carol. 30, 51–56 (1989)

    MATH  MathSciNet  Google Scholar 

  7. Ioffe A.: Regular points of Lipschitz functions. Trans. Am. Soc. 251, 61–69 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jourani A., Thibault L.: A note on Fréchet and approximate subdifferentials of composite functions. Bull. Austral. Math. Soc. 49, 111–116 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mordukhovich B.S.: Metric approximations and necessary optimality conditions for general classes of extremal problems. Soviet Math. Dokl. 22, 526–530 (1980)

    MATH  Google Scholar 

  10. Mordukhovich B.S.: Variational analysis and generalized differentiation. I. Basic theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330. Springer, Berlin (2006)

    Google Scholar 

  11. Mordukhovich B.S.: Variational analysis and generalized differentiation. II. Applications. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 331. Springer, Berlin (2006)

    Google Scholar 

  12. Mordukovich B.S., Shao Y.: Fuzzy calculus for coderivatives of multifunctions. Nonlinear Anal. 29, 605–626 (1997)

    Article  MathSciNet  Google Scholar 

  13. Van Ngai H., Théra M.: A fuzzy necessary optimality condition for non-Lipschitz optimization in Asplund spaces. SIAM J. Optim. 12, 656–668 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rockafellar, R.T.: Large-scale extended linear-quadratic programming and multistage optimization. In: Advances in Numerical Partial Differential Equations and Optimization: Proceedings of the Fifth Mexico-United States Workshop, vol. 2, pp. 247–261 (1991)

  15. Rockafellar R.T.: Lagrange multipliers and optimality. SIAM Rev. 35, 183–238 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rockafellar, R.T.: Extended nonlinear programming. In: Nonlinear Optimization and Related Topics (Erice, 1998), Appl. Optim., vol. 36, pp. 381–399. Kluwer, Dordrecht (2000)

  17. Rockafellar R.T., Wets R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  18. Vinter R.: Optimal Control. Birkhauser, Boston (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, J., Pattanaik, S.R. & Théra, M. A note on an approximate lagrange multiplier rule. Math. Program. 123, 161–171 (2010). https://doi.org/10.1007/s10107-009-0320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0320-7

Keywords

Mathematics Subject Classification (2000)

Navigation