Skip to main content
Log in

Approximating a class of combinatorial problems with rational objective function

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a 0 + a 1 x 1 + . . . + a n x n subject to certain constraints to solve the problem of minimizing a rational function of the form (a 0 + a 1 x 1 + . . . + a n x n )/(b 0 + b 1 x 1 + . . . + b n x n ) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo’s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo’s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an α-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an α-approximation (1/α-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billionnet A.: Approximation algorithms for fractional knapsack problems. Oper. Res. Lett. 30(5), 336–342 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bitran G.R., Magnanti T.L.: Duality and sensitivity analysis for fractional programs. Oper. Res. 24, 675–699 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carlson, J., Eppstein, D.: The weighted maximum-mean subtree and other bicriterion subtree problems. In: ACM Computing Research Repository, cs.CG/0503023. (2005)

  4. Chen D.Z., Daescu O., Dai Y., Katoh N., Wu X., Xu J.: Efficient algorithms and implementations for optimizing the sum of linear fractional functions, with applications. J. Comb. Optim. 9, 69–90 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dantzig G.B., Blattner W., Rao M.R.: Finding a cycle in a graph with minimum cost to time ratio with applications to a ship routing problem. In: Rosensthiel, P. (eds) Theory of Graphs: International Symposium, pp. 77–84. Dunod, Paris (1967)

    Google Scholar 

  6. Dasdan A., Gupta R.K.: Faster maximum and minimum mean cycle algorithms for system-performance analysis. IEEE Trans. Comp. Aid. Des. Integr. Circ. Syst. 17(10), 889–899 (1998)

    Article  Google Scholar 

  7. Dasdan, A., Irani, S.S., Gupta, R.K.: Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems. In: Proceedings of the 36th ACM/IEEE Conference on Design Automation, pp. 37–42 (1999)

  8. Dinkelbach W.: On nonlinear fractional programming. Manag. Sci. 13, 492–498 (1967)

    Article  MathSciNet  Google Scholar 

  9. Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP—Completeness. W.H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  10. Gubbala, P., Raghavachari, B.: Finding k—connected subgraphs with minimum average weight. In: Proceedings of the 6th Latin American Theoretical Informatics Symposium (LATIN), Lecture Notes in Computer Science, vol. 2976, pp. 212–221. Springer, Berlin (2004)

  11. Hashizume S., Fukushima M., Katoh N., Ibaraki T.: Approximation algorithms for combinatorial fractional programming problems. Math. Program. 37, 255–267 (1987)

    Article  MathSciNet  Google Scholar 

  12. Jagannathan R.: On some properties of programming problems in parametric form pertaining to fractional programming. Manag. Sci. 12, 609–615 (1966)

    Article  MathSciNet  Google Scholar 

  13. Jain K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jain K., Măndoiu I., Vazirani V.V., Williamson D.P.: A primal-dual schema based approximation algorithm for the element connectivity problem. J. Algorithms 45(1), 1–15 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Karp R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Math. 23(3), 309–311 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Katoh N.: A fully polynomial-time approximation scheme for minimum cost-reliability ratio problems. Discrete Appl. Math. 35(2), 143–155 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Khuller S., Vishkin U.: Biconnectivity approximations and graph carvings. J. Assoc. Comput. Mach. 41(2), 214–235 (1994)

    MATH  MathSciNet  Google Scholar 

  18. Klau, G., Ljubi, I. Mutzel, P. Pferschy, U., Weiskircher R.: The fractional prize collecting Steiner tree problem on trees. In: Proceedings of the 11th European Symposium on Algorithms (ESA 2003), Lecture Notes in Computer Science, vol. 2832, pp. 691–702. Springer, Berlin (2003)

  19. Lawler E.L.: Optimal cycles in doubly weighted directed linear graphs. In: Rosensthiel, P. (eds) Theory of Graphs: International Symposium, pp. 209–214. Dunod, Paris (1967)

    Google Scholar 

  20. Megiddo N.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4(4), 414–424 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Orlin J.B., Ahuja R.K.: New scaling algorithms for the assignment and minimum mean cycle problems. Math. Program. 54(1), 41–56 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Papadimitriou C.H., Yannakakis M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Radzik T. Newton’s method for fractional combinatorial optimization. In: Proceeings of 33rd Annual Symposium on Foundations of Computer Science, pp. 659–669 (1992)

  24. Shigeno M., Saruwatari Y., Matsui T.: An algorithm for fractional assignment problems. Discrete Appl. Math. 56(2–3), 333–343 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Skiscim C.C., Palocsay S.W.: The complexity of minimum ratio spanning tree problems. J. Glob. Optim. 30, 335–346 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Correa.

Additional information

A preliminary version of this paper appeared in the Proceedings of SWAT 2006. Research partially supported by CNPq Prosul Proc. 490333/04-4, Proc. 307011/03–8, and 305702/07–6 (Brazil); ProNEx - FAPESP/CNPq Proc. 2003/09925-5 (Brazil); and CONICYT (Chile), grants Anillo en Redes ACT08 and Fondecyt 1060035.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correa, J.R., Fernandes, C.G. & Wakabayashi, Y. Approximating a class of combinatorial problems with rational objective function. Math. Program. 124, 255–269 (2010). https://doi.org/10.1007/s10107-010-0364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0364-8

Keywords

Mathematics Subject Classification (2000)

Navigation