Skip to main content
Log in

On mixing sets arising in chance-constrained programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The mixing set with a knapsack constraint arises in deterministic equivalent of chance-constrained programming problems with finite discrete distributions. We first consider the case that the chance-constrained program has equal probabilities for each scenario. We study the resulting mixing set with a cardinality constraint and propose facet-defining inequalities that subsume known explicit inequalities for this set. We extend these inequalities to obtain valid inequalities for the mixing set with a knapsack constraint. In addition, we propose a compact extended reformulation (with polynomial number of variables and constraints) that characterizes a linear programming equivalent of a single chance constraint with equal scenario probabilities. We introduce a blending procedure to find valid inequalities for intersection of multiple mixing sets. We propose a polynomial-size extended formulation for the intersection of multiple mixing sets with a knapsack constraint that is stronger than the original mixing formulation. We also give a compact extended linear program for the intersection of multiple mixing sets and a cardinality constraint for a special case. We illustrate the effectiveness of the proposed inequalities in our computational experiments with probabilistic lot-sizing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atamtürk A.: Strong formulations of robust mixed 0–1 programming. Math. Program. 108, 235–250 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atamtürk A., Nemhauser G.L., Savelsbergh M.W.P.: The mixed vertex packing problem. Math. Program. 89, 35–53 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Balas E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89, 1–44 (1998)

    Article  Google Scholar 

  4. Beraldi P., Ruszczyński A.: A branch and bound method for stochastic integer programs under probabilistic constraints. Optim. Methods Softw. 17, 359–382 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beraldi P., Ruszczyński A.: The probabilistic set covering problem. Oper. Res. 50, 956–967 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charnes A., Cooper W., Symonds G.Y.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manage. Sci. 4, 235–263 (1958)

    Article  Google Scholar 

  7. Conforti M., di Summa M., Wolsey L.A.: The mixing set with flows. SIAM J. Discrete Math. 21(2), 396–407 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conforti M., Wolsey L.A.: Compact formulations as union of polyhedra. Math. Program. 114, 277–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cornuéjols G.: Valid inequalities for mixed integer linear programs. Math. Program. 112, 3–44 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dentcheva D., Prékopa A., Ruszczyński A.: Concavity and efficient points of discrete distributions in probabilistic programming. Math. Program. 89, 55–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Günlük O., Pochet Y.: Mixing mixed-integer inequalities. Math. Program. 90, 429–457 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lejeune M.A., Ruszczyński A.: An efficient trajectory method for probabilistic inventory-production-distribution problems. Oper. Res. 55(2), 378–394 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luedtke J., Ahmed S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luedtke J., Ahmed S., Nemhauser G.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122(2), 247–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lulli G., Sen S.: Branch-and-price algorithm for multistage stochastic integer programming with application to stochastic batch-sizing problems. Manage. Sci. 50(6), 786–796 (2004)

    Article  MATH  Google Scholar 

  16. Miller A.J., Wolsey L.A.: Tight formulations for some simple mixed integer programs and convex objective integer programs. Math. Program. 98, 73–88 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller B.L., Wagner H.M.: Chance constrained programming with joint constraints. Oper. Res. 13, 930–965 (1965)

    Article  MATH  Google Scholar 

  18. Prékopa A.: Contributions to the theory of stochastic programming. Math. Program. 4, 202–221 (1973)

    Article  MATH  Google Scholar 

  19. Prékopa A.: Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution. ZOR Methods Models Oper. Res. 34, 441–461 (1990)

    Article  MATH  Google Scholar 

  20. Ruszczyński A.: Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Math. Program. 93, 195–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saxena A., Goyal V., Lejeune M.A.: MIP reformulations of the probabilistic set covering problem. Math. Program. 121(1), 1–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sen S.: Relaxations for probabilistically constrained programs with discrete random variables. Oper. Res. Lett. 11, 81–86 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. van Vyve M.: The continuous mixing polyhedron. Math. Oper. Res. 30(2), 441–452 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wolsey L.A.: Integer programming. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  25. Zhao M., de Farias I.R. Jr: The mixing-MIR set with divisible capacities. Math. Program. 115(1), 73–103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simge Küçükyavuz.

Additional information

This study was supported, in part, by NSF-CMMI Grant 0917952.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küçükyavuz, S. On mixing sets arising in chance-constrained programming. Math. Program. 132, 31–56 (2012). https://doi.org/10.1007/s10107-010-0385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0385-3

Keywords

Mathematics Subject Classification (2000)