Skip to main content
Log in

New results on the Windy Postman Problem

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we study the Windy Postman Problem (WPP). This is a well-known Arc Routing Problem that contains the Mixed Chinese Postman Problem (MCPP) as a special case. We extend to arbitrary dimension some new inequalities that complete the description of the polyhedron associated with the Windy Postman Problem over graphs with up to four vertices and ten edges. We introduce two new families of facet-inducing inequalities and prove that these inequalities, along with the already known odd zigzag inequalities, are Chvátal–Gomory inequalities of rank at most 2. Moreover, a branch-and-cut algorithm that incorporates two new separation algorithms for all the previously mentioned inequalities and a new heuristic procedure to obtain upper bounds are presented. Finally, the performance of a branch-and-cut algorithm over several sets of large WPP and MCPP instances, with up to 3,000 nodes and 9,000 edges (and arcs in the MCPP case), shows that, to our knowledge, this is the best algorithm to date for the exact resolution of the WPP and the MCPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benavent E., Carrotta A., Corberán A., Sanchis J.M., Vigo D.: Lower bounds and heuristics for the windy rural postman problem. Eur. J. Oper. Res. 176, 855–869 (2007)

    Article  MATH  Google Scholar 

  2. Brucker P. The Chinese postman problem for mixed graphs. In Proceedings of international workshop. Lecture Notes in Computer Science 100, 354–366 (1981)

  3. Caprara A., Fischetti M.: \({\{0,\frac{1}{2}\}}\) -Chvátal-Gomory cuts. Math. Program. 74, 221–235 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Caprara A., Fischetti M., Letchford A.N.: On the separation of maximally violated mod-k cuts. Math. Program. 87, 37–56 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Christof, T., Loebel, A.: PORTA—a polyhedron representation algorithm www.informatik.uni-heidelberg.de/groups/comopt/software/PORTA/ (1998)

  6. Christofides, N., Benavent, E., Campos, V., Corberán, A., Mota, E.: An optimal method for the mixed postman problem. In Thoft-Christensen, P. (ed.) System Modelling and Optimization. Lecture Notes in Control and Information Sciences 59, Springer (1984)

  7. Corberán A., Plana I., Sanchis J.M.: Zigzag inequalities: a new class of facet-inducing inequalities for arc routing problems. Math. Program. 108, 79–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corberán A., Plana I., Sanchis J.M.: A branch & cut algorithm for the windy general routing problem and special cases. Networks 49, 245–257 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Corberán, A., Plana I., Sanchis, J.M.: Arc routing problems: data instances. www.uv.es/corberan/instancias.htm (2007)

  10. Corberán A., Plana I., Sanchis J.M.: The windy general routing polyhedron: a global view of many known arc routing polyhedra. SIAM J. Discrete Math. 22, 606–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grötschel, M., Win, Z.: On the windy postman polyhedron. Report No. 75, Schwerpunktprogram der Deutschen Forschungsgemeinschaft, Universität Augsburg, Germany (1988)

  12. Grötschel M., Win Z.: A cutting plane algorithm for the Windy Postman Problem. Math. Program. 55, 339–358 (1992)

    Article  MATH  Google Scholar 

  13. Guan M.: On the Windy Postman Problem. Discrete Appl. Math. 9, 41–46 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Minieka E.: The Chinese postman problem for mixed networks. Manage. Sci. 25, 643–648 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Naddef D., Rinaldi G.: The symmetric traveling salesman polytope and its graphical relaxation: composition of valid inequalities. Math. Program. 51, 359–400 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oswald M., Reinelt G., Seitz H.: Applying mod-k cuts for solving linear ordering problems. TOP 17, 158–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Papadimitriou C.H.: On the complexity of edge traversing. J. Assoc. Comput. Mach. 23, 544–554 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ralphs T.K.: On the mixed Chinese postman problem. Oper. Res. Lett. 14, 123–127 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wenger, K.: Generic Cut Generation Methods for Routing Problems. PhD Dissertation, University of Heidelberg, Germany (2004)

  20. Win, Z.: Contributions to Routing Problems. PhD Dissertation, University of Augsburg, Germany (1987)

  21. Win Z.: On the Windy Postman Problem on eulerian graphs. Math. Program. 44, 97–112 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zaragoza Martínez F.J.: Series-parallel graphs are windy postman perfect. Discrete Math. 308, 1366–1374 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Corberán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corberán, A., Oswald, M., Plana, I. et al. New results on the Windy Postman Problem. Math. Program. 132, 309–332 (2012). https://doi.org/10.1007/s10107-010-0399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0399-x

Keywords

Mathematics Subject Classification (2000)