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Abstract

In this paper we study the Windy Postman Problem. This is a well known Arc
Routing Problem which contains the Mixed Chinese Postman Problem as a special
case. We present here a full description of the polyhedron associated to the Windy
Postman Problem over graphs with up to 4 vertices and 10 edges. We introduce two
new families of facet-inducing inequalities and we prove that these inequalities and the
already known Odd Zigzag inequalities are mod-2 cut inequalities. Moreover, a Branch
& Cut (B&C) algorithm that incorporates two new separation algorithms for all the
previously mentioned inequalities and a new heuristic procedure to obtain upper bounds
are presented. Finally, the performance of the B&C algorithm over several sets of
large WPP and MCPP instances, with up to 3000 nodes and 9000 links, shows that up to
our knowledge this is the best algorithm for the exact resolution of the WPP and the MCPP.

Key Words: Polyhedral Combinatorics, Facets, Arc Routing, Windy Postman Problem,
Mixed Postman Problem.

1 Introduction

Arc Routing Problems consist of finding one or several shortest closed walks (tours) on the links
of a given graph G satisfying certain conditions. Graph G can be undirected (all the links are
edges that can be traversed, at the same cost, in both directions), directed (all the links are arcs
that must be traversed in a given direction), mixed (having edges and arcs simultaneously) and
windy (an undirected graph with two costs associated with each edge representing the cost of
traversing it in each direction). Obviously, routing problems defined on windy graphs generalize
the corresponding problems defined on undirected, directed and mixed graphs.

In this paper we deal with the Windy Postman Problem, WPP. This problem can be defined
as follows. Given an undirected and connected graph G = (V, E) with two non-negative costs
cij and cji associated with each edge (i, j)∈E corresponding to the cost of traversing it from
i to j and from j to i, respectively, find the tour on G traversing each edge at least once, at
minimum cost. This problem was first introduced by Minieka (1979), is an NP -hard problem
(Guan 1984 and Brucker 1981) which can be solved in polynomial time if G is Eulerian (Win,
1987).

∗corresponding author: angel.corberan@uv.es
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Win (1987) and Grötschel & Win (1992) proposed a cutting plane algorithm for the WPP
based on a previous polyhedral study that, as far as we know, is the first polyhedral approach
that has been applied to the resolution of a NP-hard Arc Routing Problem. They proved
that the Odd-cut inequalities and the k-wheel inequalities are facet-inducing, although only the
separation of the first ones was implemented in their cutting plane algorithm. More recently,
Corberán, Plana & Sanchis (2006) present a new family of facet-inducing inequalities for the
Windy General Routing Problem, the Odd Zigzag inequalities, which also applies to the WPP.
These inequalities generalize the 3-wheel inequalities proposed by Win (1987) for the WPP.

On the other hand, the WPP contains the mixed version of the well-known Chinese Postman
Problem, MCPP, as a special case. As the WPP, this NP-hard problem (Papadimitriou, 1976)
can be handled with a formulation using two variables associated with each edge (see Christofides
et al., 1984, and Ralphs, 1993) and therefore it can be considered as a WPP in which some
variables have infinite cost. Hence, the results presented here for the WPP can be easily applied
to the MCPP.

In the next section we define the problem, introduce the notation that will be used in this
paper and present some known results. Section 3 is devoted to fully describe the polyhedra
associated with the WPP over graphs with up to 4 vertices and 10 edges. Here we also present
two new families of facet-inducing inequalities, the Even-Even and Odd-Odd Zigzag inequalities.
We prove that these inequalities and the Odd Zigzag inequalities are mod-2 cut inequalities in
Section 4. The Branch & Cut algorithm for the resolution of the WPP is described in section
5. The computational experiments performed on a wide set of WPP and MCPP large instances
are described in Section 6, while Section 7 presents the conclusions.

2 Problem definition and known results

As mentioned in the Introduction, the Windy Postman Problem consists of finding a minimum
cost closed walk traversing all the edges of a windy graph G = (V, E) (WPP tour) at least once.

Given a node subset, S ⊆ V , let δ(S) denote the edge set with an end-point in S and the
other in V \ S and let E(S) be the set of edges with both end-points in S. Given two node
subsets S1, S2 ⊆ V , (S1, S2) will represent the set of edges with one end-point in S1 and the
other in S2. A vertex is called even (odd) if it is incident with an even (odd) number of edges.
A subset S ⊂ V is called even (odd) if it contains an even (odd) number of odd vertices.

Let xij be the number of times edge (i, j) is traversed from i to j in a WPP tour. Given
F ⊆ E, we denote by x(F ) =

∑
{i,j}∈F (xij + xji), and given (S1, S2), we denote by x(S1 : S2)

the sum of the variables associated with the traversal from S1 to S2 of the edges in (S1, S2),

x(S1 : S2) =
∑

i∈S1, j∈S2

xij

Note that x(S1, S2) = x(S1 : S2) + x(S2 : S1). The formulation given by Win (1987) and by
Grötschel & Win (1992) is:
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Minimize
∑

(i,j)∈E

(cijxij + cjixji)

s.t.:

xij + xji ≥ 1, ∀(i, j) ∈ E (1)∑

(i,j)∈δ(i)

(xij − xji) = 0, ∀i ∈ V (2)

xij , xji ≥ 0 (3)
xij , xji integer (4)

where conditions conditions (1) imply that each edge will be traversed at least once and condi-
tions (2) force the (directed) graph represented by the tour to be symmetric. The above system
includes an equation associated with each vertex. The |V | equations (2) will be referred to as
the system equations and any |V |−1 of them are linearly independent.

Let WPP(G) be the convex hull of all the tours x ∈ Z2|E| satisfying (1) to (4). In
Grötschel & Win (1988) it is shown that WPP(G) is an unbounded polyhedron with dimen-
sion 2|E|−|V |+1, and that the following inequalities are, under mild conditions, facet-inducing:

• Trivial inequalities (3)
• Traversing inequalities (1)
• The Odd-cut inequalities:

x(δ(S)) ≥ |δ(S)|+ 1, ∀S ⊂ V, |δ(S)| is odd (5)
• The k-wheel inequalities.

Inequalities (5) are equivalent to the following ones, which contain fewer non-zero elements:

x(S : V \S) ≥ |δ(S)|+ 1
2

, ∀S ⊂ V, |δ(S)| is odd (6)

More recently, Corberán, Plana & Sanchis (2006) present a new family of facet-inducing
inequalities for the Windy General Routing Problem, the Odd Zigzag inequalities, which also
applies to the WPP. These inequalities generalize the 3-wheel inequalities.

In Corberán, Plana & Sanchis (2005) it is also shown that all the facet-inducing inequalities
for WPP(G) except (3) and (1) are weak configuration inequalities. Associated with a weak
configuration inequality, we have a configuration graph, GC = (B, E), where node set B is a
partition of V , B = {B1, B2, . . . , Br}, and E contains an edge (Bi, Bj) for each edge (u, v) of
G with u ∈ Bi, v ∈ Bj . In other words, GC is the graph resulting after shrinking node sets Bi,
i = 1, . . . , r, into a single vertex each, but keeping all the edges. This concept is similar to that
of configuration inequalities by Naddef & Rinaldi (1991). They only differ in the fact that, in a
configuration inequality, all the variables xuv associated with the edges {u, v} ∈ (Bi, Bj) have
equal coefficients in the inequality, while a weak configuration inequality can have variables xuv,
xst, with u, s∈Bi and v, t∈Bj , with different coefficients. This is the case of the Odd Zigzag
inequalities and the inequalities presented later in this paper. In Corberán, Plana & Sanchis
(2005) is also included a ‘lifting’ theorem that states that if a weak configuration inequality is
facet-inducing for WPP(GC), it is also facet-inducing for WPP(G).

Given that we present in this paper a separation algorithm for the Odd zigzag inequalities
and that they are related to the new inequalities presented below, we describe them briefly in
the context of the WPP.
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2.1 Odd Zigzag inequalities

These inequalities cut off fractional solutions containing a zigzag associated with variables with
0.5 value such as the one shown in Figure 1a. Consider a partition of the set of vertices V into
4 parts, M1, M2, M3 and M4, where each M i contains an odd number of odd vertices. Let
αij denote the number of edges in (M i,M j). Let us call H = (M1,M2)∪ (M3, M4) (horizontal
edges) and D = (M2,M3) ∪ (M1,M4) (diagonal edges). Note that H ∪ D = δ(M1 ∪M3). Let
us define a subset of required edges F ⊂ (H ∪ D) satisfying (see Figure 1b, where edges in F
are represented in bold lines)

|H \ F|+ |D ∩ F| = |D \ F|+ |H ∩ F| (7)

The configuration graph GC associated with the Odd Zigzag inequalities is defined by the
partition of V and the set F above, and by the following pair of coefficients associated with each
edge eij (see Figure 1b):

(cij , cji) =





(0, 2) ∀eij ∈ H \ F , i ∈ M1 ∪M3, j ∈ M2 ∪M4

(2, 2) ∀eij ∈ H ∩ F
(1, 3) ∀eij ∈ D ∩ F , i ∈ M1 ∪M3, j ∈ M2 ∪M4

(1, 1) otherwise

The corresponding Odd Zigzag inequality is then

x(δ(M1∪M2))+2x(M2 :M1)+2x(M4 :M3)+2x(Fzz) ≥ α13+α24+α14+α23+2|H∩F|+ 2 (8)

where x(Fzz) denotes the variables associated with the edges in F in the direction given by the
zigzag, i.e. in the direction M1−M2−M3−M4−M1. Set F can be understood in the following
way. The edges in GC except two given edges e13∈(M1,M3) and e24∈(M2,M4) can be oriented
to obtain a (directed) symmetric graph. Given any such orientation, set F is defined by all the
required edges that have been oriented in the opposite direction to the zigzag. In particular,
set F in Figure 1b is defined from the orientation associated with the fractional solution shown
in Figure 1a. Note that such a set F satisfies the condition (7). Other sets F can be defined
to obtain valid inequalities but only the one shown in Figure 1b has an associated inequality
violated by the fractional solution in Figure 1a.
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Figure 1: A fractional solution and an Odd Zigzag configuration with set F in bold lines.

As it occurs with Odd-cut inequalities, Odd Zigzag inequalities can be written also in sparse
form. To illustrate this, consider the inequality (8) represented in Figure 1b. Due to the
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symmetry equation associated with node M1, the term x(V \M1 :M1) in the inequality can be
replaced by x(M1 :V \M1) to obtain an equivalent inequality. Proceeding in a similar way with
node M2 and then dividing by 2, we obtain the following equivalent inequality, whose coefficients
are shown in Figure 1c:

x(M1∪M2 : M3∪M4)+x(M2 :M1)+x(M4 :M3)+x(Fzz) ≥ 1
2
(α13+α24+α14+α23)+|H∩F|+1 (9)

3 Small WPP polyhedra and new Zigzag inequalities

When we were designing the separating algorithm for the Odd Zigzag inequalities we generated
some fractional solutions which satisfy all the Odd-cut inequalities and we represented them
to find violated inequalities visually. We look for directed paths formed by four edges whose
associated variables have a 1.5 value joining 4 odd nodes (such as that in Figure 1a). We realized
that some fractional solutions have four edges with 1.5 value but the path they formed is not
a directed path (one or two edges are traversed in the opposite direction to the others) and it
joins two odd nodes and two even nodes (such as those in Figures 4a, 4b, 5a and 6a). Given that
these fractional solutions can not be separated by an Odd Zigzag inequality, some other classes
of facet-inducing inequalties must exist. In order to find them, we have made a full description
of the polyhedra associated with the WPP defined on graphs with 4 vertices and up to 10 edges.
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Figure 2: Graphs with 4 nodes and 9 edges

We first considered the complete graph with 6 edges. Then we added edges to obtain all
the possible graphs with 7,8,9 and 10 edges, respectively. For each graph, the full description of
its WPP associated polyhedron was obtained using PORTA (Christof, Jünger & Reinelt, 1991).
Trivial and traversing facets appear in the description of all the polyhedra and we do not mention
them in what follows. Graphs with 7 edges are fully described with Odd-cut inequalities, while
graphs with 6 and 8 edges are described with Odd-cut and Odd Zigzag inequalities. All different
graphs with 9 edges are depicted in Figure 2, where odd degree nodes are represented by a
double circle. The polyhedra associated with graphs in Figures 2a, 2b and 2c are fully described
with Odd-cut inequalities, while for graph in Figure 2d Odd-cut and Odd Zigzag inequalities are
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needed and for graph in Figure 2e no more inequalities are needed. However, the polyhedron
associated with graph in Figure 2f (and Figure 3a) contains new facet-defining inequalities that
do not correspond to any of the classes previously mentioned.

There are 10 different graphs with 4 vertices and 10 edges. Two of them have only even
degree vertices and their corresponding polyhedra are completely described with trivial and
traversing inequalities. Three other graphs need Odd-cut inequalities for their polyhedra to
be described while four other graphs also need Odd Zigzag inequalities. The polyhedron as-
sociated with the remaining graph, shown in Figure 3b, contains new facet-defining inequalities.
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Figure 3: WPP instances whose polyhedra have new facet-inducing inequalities.

Hence we have found facet-inducing inequalities different from Odd-cut and Odd Zigzag
inequalities only for the instances shown in Figure 3. For the instance shown in Figure 3a, the
two fractional solutions in Figure 4 can be obtained. Two similar fractional solutions can also
be found for the instance depicted in Figure 3b. Note that in Figure 4b the arrangement of the
nodes has been changed in order to better illustrate the inequalities that will be described in
the following sections. One of the two variables associated with each one of the edges (1, 2),
(2, 3), (3, 4) and (4, 1) have 1.5 value in these solutions. In the solution shown in Figure 4a
these edges are traversed in the directions (1, 2), (2, 3), (4, 3) and (1, 4) while in the solution
depicted in Figure 4b they are traversed in the directions (1, 2), (2, 3), (3, 4) and (1, 4). Each of
these two solutions violates the corresponding inequality described in what follows. Each type
of inequality is determined by the situation of the two odd degree nodes and by the traversal of
the 4 edges (1, 2), (2, 3), (3, 4) and (4, 1). Note that the four edges with 1.5 value do not form a
directed path. In the first case there are two edges that are traversed in the opposite direction
to the others whilst in the second case there is only one. For the sake of simplicity, for each type
of inequality we will say that an edge is oriented ‘in the direction of the zigzag’ if it is traversed
as described above.
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Figure 4: Fractional solutions
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3.1 Even-Even Zigzag inequalities

The inequalities presented here cut fractional solutions similar to those represented in Figures
4a and 5a. The name of the inequalities refers to the degree of the two shores of the edge cutset
δ(M1∪M3). Note that, in this case, the number of edges in this cutset is even.

Consider a partition of the set of vertices V into 4 parts, M1, M2, M3 and M4, where M2

and M4 contains an odd number of odd vertices while M1 and M3 contains an even number of
odd vertices. Let us define a subset of edges F ⊂ δ(M1∪M3) satisfying:

|(M1,M2 ∪M4) \ F|+|(M2 ∪M4,M3)∩F| = |(M1,M2 ∪M4)∩F|+|(M2 ∪M4, M3) \ F| (10)

(see Figure 5b, where edges in F are represented in bold lines)

The configuration graph GC associated with the Even-Even Zigzag inequalities is defined by
the partition of V and the set F above, and by the following pair of coefficients associated with
each edge eij (see Figure 5b):

(cij , cji) =





(0, 2) ∀eij ∈ (M1, M2 ∪M4) \ F , i ∈ M1, j ∈ M2 ∪M4

(2, 2) ∀eij ∈ (M1, M2 ∪M4) ∩ F , ∀eij ∈ (M2,M4)
(1, 3) ∀eij ∈ (M3, M2 ∪M4) ∩ F , i ∈ M3, j ∈ M2 ∪M4

(1, 1) otherwise

Note that the pairs with different coefficients correspond to the edges in the left hand side of
(10). The corresponding Even-Even Zigzag inequality is then

x(δ(M3)) + 2x(M2,M4) + 2x(M2 :M1) + 2x(M4 :M1) + 2x(Fzz) ≥
≥ α13 + 2α24 + α23 + α34 + 2|δ(M1)∩F|+ 2 (11)

where x(Fzz) denotes the variables associated with the edges in F in the direction of the zigzag,
i.e. (M1→M2), (M2→M3), (M4→M3) and (M1→M4).
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Figure 5: A fractional solution and an Even-Even Zigzag configuration with set F in bold lines.

Set F can be chosen in the following way. The edges in GC except two given edges e13, f13∈
(M1,M3) and a given edge e24 ∈ (M2,M4) can be oriented to obtain a (directed) symmetric
graph. Given any such orientation, set F is defined by all the edges that have been oriented
in the opposite direction to the zigzag. In particular, set F in Figure 5a is defined from the
orientation associated with the fractional solution. Note that such a set F satisfies the condition
(10).
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Theorem 1 Even-Even Zigzag inequalities (11) are valid for WPP(G).

Proof: Let F (x)≥ c0 denote the inequality and let x be a WPP tour. Given that each WPP
tour must traverse every edge in one of its two possible directions, x has at least an F -cost of
c0−2. We can suppose that x traverses all the edges in the left hand side of (10) in the direction
corresponding to their lower coefficient, i.e., from M1 ∪M3 to M2 ∪M4 (otherwise we have an
extra F-cost of two and we are done). Let K be the number of such edges. Since the nodes M2

and M4 are odd, the tour x cannot traverse each edge exactly once and an extra matching on
these two nodes is needed. Notice that all these matchings have F -cost of at least 2 (and hence
we are done) except the matching with F -cost zero defined by two edges not in F traversed
from M1 to M2 and from M1 to M4, respectively. So we can suppose that x traverses at least
K+2 times from M1 ∪M3 to M2 ∪M4 and, hence, it traverses also K+2 times from M2 ∪M4

to M1 ∪M3. Given that the number of edges in the right hand side of (10) is K, x traverses at
least 2 extra times from M2 ∪M4 to M1 ∪M3, with an F -cost of at least 2. ¨

Theorem 2 Even-Even Zigzag inequalities (11) are facet-inducing for WPP(G) if GC \F is a
complete graph, there are three edges e13, f13∈(M1,M3) and e24∈(M2,M4) and the remaining
edges in GC can be oriented to induce a (directed) symmetric graph where all the edges in δ(M1∪
M3) \ F are oriented in the direction of the zigzag and all the edges in F are oriented in the
opposite direction.

Proof: We will first prove that the inequalities are facet-inducing for WPP(GC). We need
to find twice the number of edges in GC minus 3 linearly independent WPP tours satisfying
F (x) = c0. Each tour is a vector with two components xij , xji associated with each edge
e = {i, j} in GC .

We first select the six components corresponding to the given edges e13, f13 and e24. Let xd

denote the incidence vector of the symmetric subgraph induced by the orientation mentioned in
the theorem. Note that the six selected components in xd are zero and that F (xd) = c0 − 6.

Since GC \ F is a complete graph, it is possible to select another 4 components associated
with 4 edges not in F , e12∈(M1, M2), e14∈(M1,M4), e23∈(M2,M3) and e43∈(M4,M3), in
the direction given by the zigzag. It can be seen that, for each unselected variable xij , a tour
based on vector xd can be constructed satisfying F (x) = c0 and such that it uses the variable xij

once more than xd plus some of the selected components. Moreover, we can build 7 more WPP
linearly independent tours from xd by adding to it only some of the selected components, also
satisfying F (x) = c0. If we subtract xd from all the tours and arrange them in rows, we obtain a
full-rank matrix. Hence the Even-Even Zigzag inequalities are facet-inducing for WPP(GC). By
applying the lifting theorem in Corberán, Plana & Sanchis (2005), they are also facet-inducing
for WPP(G). ¨

Also Even-Even Zigzag inequalities can be written in sparse form. Due to the symmetry
equation associated with node M3, the term x(V \M3 :M3) in the inequality can be replaced by
x(M3 :V \M3) to obtain an equivalent inequality that when divided by two has the form:

x(M3 : V \M3) + x(M2,M4) + x(M2 :M1) + x(M4 :M1) + x(Fzz) ≥

≥ 1
2
(α13 + 2α24 + α23 + α34) + |δ(M1)∩F|+ 1 (12)

8



3.2 Odd-Odd Zigzag inequalities

In this section we present another family of inequalities that cut fractional solutions like those
shown in Figures 4b and 6a. Again, the name of the inequalities refers to the degree of the two
shores of the edge cutet δ(M1∪M3). In this case, the number of edges in this cutset is odd.

Consider a partition of the set of vertices V into 4 parts, M1, M2, M3 and M4, where M2

and M3 contain an odd number of odd vertices while M1 and M4 contain an even number of
odd vertices. Note that δ(M1∪M3) contains an odd number of edges. Let us define a subset of
edges F ⊂ δ(M1∪M3) satisfying:

|(M1,M2 ∪M4) \ F|+ |(M3,M4) \ F|+ |(M2,M3) ∩ F|+ 1 =

|(M1,M2 ∪M4) ∩ F|+ |(M3,M4) ∩ F|+ |(M2,M3) \ F| (13)

(see Figure 6b, where edges in F are represented in bold lines)

The configuration graph GC associated with the Odd-Odd Zigzag inequalities is defined by
the partition of V and the set F above, and by the following pair of coefficients associated with
each edge eij (see Figure 6b):

(cij , cji) =





(0, 1) ∀eij ∈ (M1,M2 ∪M4) \ F , i ∈ M1, j ∈ M2 ∪M4

(0, 1) ∀eij ∈ (M3,M4) \ F , i ∈ M3, j ∈ M4

(2, 1) ∀eij ∈ (M2,M3) ∩ F , i ∈ M2, j ∈ M3

(1, 1) otherwise

Again, the pairs with different coefficients correspond to the edges in the left hand side of (13).
The corresponding Odd-Odd Zigzag inequality is then

x(M2 ∪M4 : M1 ∪M3) + x(M1,M3) + x(M2,M4) + x(M3 :M2) + x(Fzz) ≥

≥ α13 + α24 + |(M2, M3) \ F|+ |F|+ 1 (14)

where x(Fzz) denotes the variables associated with the edges in F in the direction of the zigzag,
i.e. (M1, M2), (M2,M3), (M3,M4) and (M1,M4).
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Figure 6: A fractional solution and an Odd-Odd Zigzag configuration with set F in bold lines.

Theorem 3 Odd-Odd Zigzag inequalities (14) are valid for WPP(G).
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Proof: Let F (x)≥ c0 denote the inequality and let x be a WPP tour. Given that each WPP
tour must traverse every edge in one of its two possible directions, x has at least an F -cost of
c0−1. We can suppose that x traverses all the edges in the left hand side of (13) in the direction
corresponding to their lower coefficient, i.e., from M1 ∪M3 to M2 ∪M4 (otherwise we have an
extra F-cost of 1 and we are done). Let K be the number of such edges. Since the nodes M2 and
M3 are odd, the tour x cannot traverse each edge exactly once and an extra matching on these
two nodes is needed. Notice that all these matchings have F -cost of at least 1 (and hence we
are done) except the matching with F -cost zero defined by 3 edges not in F traversed from M1

to M2, from M1 to M4 and from M3 to M4, respectively. So we can suppose that x traverses
at least K+3 times from M1 ∪M3 to M2 ∪M4 and, hence, it traverses also K+3 times from
M2 ∪M4 to M1 ∪M3. Given that the number of edges in the right hand side of (13) is K+1,
x traverses at least 2 extra times from M2 ∪M4 to M1 ∪M3, with an F -cost of at least 2. ¨

Theorem 4 Odd-Odd Zigzag inequalities (14) are facet-inducing for WPP(G) if GC \F is a
complete graph, there are three edges e13 ∈ (M1,M3), e24 ∈ (M2,M4) and e14 ∈ (M1,M4) ∩ F
and the remaining edges in GC can be oriented to induce a (directed) symmetric graph where all
the edges in δ(M1∪M3) \ F are oriented in the direction of the zigzag and all the edges in F
are oriented in the opposite direction.

Proof: The proof is similar to that of Theorem 2 and is omitted here. ¨

4 Zigzag inequalities and mod-2 cuts

Let min{cx | Ax ≤ b, x integer} be an Integer Program with A and b integer. Many combina-
torial optimization problems can be written in this form. In the WPP case, the system Ax ≤ b
consists of the symmetry equations, traversing, Odd-cut and trivial inequalities. For k integer,
a mod-k cut based on the system Ax ≤ b of valid inequalities has the form uT Ax ≤ buT bc
where the vector u has components in the set {0, 1

k , . . . , k−1
k } and uT A is integer.

In this section we will prove that all the previously described Zigzag inequalities are mod-2
cuts. Let us begin with Odd Zigzag inequalities. Add the following inequalities multiplied by 1

2 :

• the Odd-cut inequality associated with M1: x(M1 : V \M1) ≥ 1
2(α12 + α14 + α13 + 1),

• the Odd-cut inequality associated with V \M3: x(V \M3 : M3) ≥ 1
2(α13 +α23 +α34 + 1),

• the traversing inequalities corresponding to the edges in (M2, M4): xij +xji ≥ 1, ∀(i, j) ∈
(M2,M4)

• the traversing inequalities corresponding to the edges in F : xij + xji ≥ 1, ∀(i, j) ∈ F
• the trivial inequalities corresponding to the variables associated with the edges in F in the

direction given by the zigzag,

• the trivial inequalities corresponding to the variables associated with the edges in (M1 ∪
M3,M2 ∪M4) \ F in the opposite direction to the zigzag, and

• the symmetry equation corresponding to M2: x(M2 : V \M2)− x(V \M2 : M2) = 0

10



We obtain an inequality with all its coefficients integer while its RHS is:

1
2

(
1
2
(α12 + α14 + α13 + 1) +

1
2
(α13 + α23 + α34 + 1) + α24 + |F|

)
.

From condition (7), it can be seen that this RHS is equal to

1
2

(α13 + α24 + α14 + α23 + 2|H ∩ F |+ 1) ,

and since the LHS is integer and α13 + α24 + α14 + α23 is an even number, the RHS can be
rounded up to

1
2

(α13 + α24 + α14 + α23 + 2|H ∩ F |+ 2) ,

which is exactly the Odd Zigzag inequality in sparse form (9).

To obtain the Even-Even Zigzag inequalities in sparse form (12), we add the following in-
equalities multiplied by 1

2 : the Odd-cut inequalities associated with M2 and with M4, the
traversing inequalities associated with edges in (M1,M3), (M2,M4) and F , the trivial inequal-
ities corresponding to the variables associated with the edges in F in the direction given by the
zigzag (here, (M1 →M2), (M2 →M3), (M4 →M3) and (M1 →M4)), the trivial inequalities
corresponding to the variables associated with the edges in (M1 ∪ M3,M2 ∪ M4) \ F in the
opposite direction to the zigzag and the symmetry equation corresponding to set M3 and then
we round up the RHS.

Finally, the Odd-Odd Zigzag inequality (14) is obtained by adding the following inequalities
multiplied by 1

2 : the Odd-cut inequalities associated with M2, with V\M3 and with set M3∪M4,
the traversing inequalities associated with edges in (M1,M3), (M2,M4) and F , the trivial
inequalities corresponding to the variables associated with the edges in F in the direction given
by the zigzag (here, (M1 →M2), (M2 →M3), (M3 →M4) and (M1 →M4)) and the trivial
inequalities corresponding to the variables associated with the edges in (M1∪M3,M2∪M4)\F
in the opposite direction to the zigzag.

5 A Branch & Cut for the WPP

We have implemented a Branch & Cut algorithm for the WPP in which, besides the well known
heuristic and exact procedures for separating violated Odd-cut inequalities (see for instance
Corberán, Plana & Sanchis, 2007), new separation algorithms for identifying Odd, Even-Even
and Odd-Odd Zigzag inequalities are incorporated. Moreover, a polynomial time algorithm
for identifying maximally violated mod-2 cuts has been added as well as a heuristic algorithm
producing feasible solutions from the LP fractional solutions.

5.1 Zigzag Separation procedure 1

This algorithm is designed to separate fractional solutions x∗ similar to those shown in Figures
1a, 5a and 6a. For the sake of simplicity we suppose here that most of the x∗ components are
integer except some pairs with values (1.5, 0) and some pairs with values (0.5, 0.5). Figure 7
shows a directed graph associated with such a fractional solution in which the number beside
each arc (i, j) denotes the value of its corresponding variable x∗ij .

We are looking for a zigzag configuration such that its corresponding inequality is violated
by x∗. Zigzag inequalities associated with a configuration with an edge (i, j) linking different
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Figure 7: Fractional solution.

sets Mk and satisfying x∗ij + x∗ji ≥ 2 does not seem to be violated by x∗. Hence, each of these
edges (i, j) must belong to one of the sets Mk and nodes i and j are shrunk in a first step.
Moreover, edges (i, j) traversed exactly once, i.e., satisfying x∗ij = 1 and x∗ji = 0 or viceversa, do
not seem to affect the violation of the inequality and therefore they are deleted. All the resulting
isolated nodes are also removed.

Figure 8: Shrunk fractional solution.
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At this point we should have one (maybe several) subgraph as the one depicted in Figure
8 containing only the edges (i, j) satisfying (x∗ij , x

∗
ji) = (1.5, 0), depicted as arcs in solid lines,

or (x∗ij , x
∗
ji) = (0.5, 0.5) represented by two opposite arcs in dotted lines. For each of these

subgraphs we proceed as follows. All nodes incident with just two edges are iteratively shrunk
into one of its adjacent nodes. Then we also shrink all the pairs of nodes linked by two parallel
edges. Figure 9a shows the graph obtained after applying this procedure to the one in Figure 8.

Then we have a cycle formed by edges with values (1.5, 0) whose nodes are linked by an edge
with values (0.5, 0.5), which we call chords (see Figure 9a). Note that each chord divides the
cycle into two parts. We iteratively select two chords and label their end-nodes as seeds (since
they are the seeds for sets Mk). We check if these two chords cross each other, i.e., each of
the two halves defined by a chord contains exactly one of the seeds associated with the other
chord. If so, the remaining chords are studied. For each one of these chords, if one of the two
halves defined by it contains 3 seeds then we shrink the other half (which contains just one
seed). If this process can be done for all the chords, we obtain a graph like the one shown in
Figure 9b, which corresponds to a zigzag configuration. However, if a chord defines halves with
two seeds each, the procedure fails and we proceed to select another pair of chords. Finally, the
zigzag configuration on the original graph is built and its corresponding inequality is checked
for violation by x∗.

(a) (b)

Figure 9: Cycle with chords and an Odd-Odd Zigzag configuration.

Since Zigzag inequalities can also be violated by solutions x∗ having fractional values different
from 1.5 and 0.5, the above procedure is applied to any LP fractional solution as follows:

(1) edges (i, j) such that x∗ij + x∗ji > 1 are shrunk, except those described in (2)

(2) edges (i, j) such that 1.25 < x∗ij + x∗ji < 1.75 and x∗ij < 0.2 or x∗ji < 0.2 are handled as
satisfying (x∗ij , x

∗
ji) = (1.5, 0) or viceversa.

(3) for the remaining edges, x∗ij +x∗ji = 1, those such that x∗ji < 0.1 are considered as satisfying
(x∗ij , x

∗
ji) = (1, 0) and are deleted and the ones such that 0.1 < x∗ij < 0.4 or 0.1 < x∗ji < 0.4

are shrunk.

(4) all the other edges are handled as satisfying (x∗ij , x
∗
ji) = (0.5, 0.5).
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5.2 Zigzag Separation procedure 2

Unlike the previous algorithm, which is capable of finding Odd, Even-Even and Odd-Odd vi-
olated Zigzag inequalities, the procedure described in this section is designed to separate only
Odd Zigzag inequalities. The idea of the algorithm is that the fractional solutions similar to the
one shown in Figure 1a satisfy the Odd-cut inequalities corresponding to the (odd) sets Mk,
k = 1, 2, 3, 4, as an equality and it works as follows.

During the execution of the Branch & Cut algorithm all the Odd-cut inequalities found are
stored. The separation procedure considers all the stored inequalities which are satisfied by x∗

as an equality. Then we select the shores S⊂V of these inequalities such that all the pairs of
variables associated with edges in (S, V \ S) have values (1, 0) except the variables associated
with 3 edges which have values (1.5, 0), (0, 1.5) and (0.5, 0.5) respectively. Three such sets are
iteratively selected. If they have no nodes in common, these 3 sets and the rest of V are the
candidates to be the sets Mk of the Odd-Zigzag configuration. Finally, if the sets can be arranged
in such a way that the arcs defined by the variables with value 1.5 form a directed cycle, then
we have an Odd-Zigzag configuration, whose associated inequality is checked for violation by x∗.

5.3 Mod-2 cuts separation procedure

The previous separation algorithms are heuristics procedures and they can fail in finding violated
Zigzag inequalities. In this section we use the polynomial algorithm presented in Caprara,
Fischetti and Letchford (2000) for the separation of maximally violated mod-k cuts. Since we
have proved that all the Zigzag inequalities are mod-2 cuts, it is likely that some of the most
violated mod-2 cuts are Zigzag inequalities which, as they are facet inducing, can be useful for
the B&C algorithm.

Let Ax ≤ b be a system of valid inequalities. Let us suppose that we find an integer
vector u ≥ 0 such that uT A is even while uT b is odd. For every feasible WPP tour x, Ax ≤ b is
satisfied and also uT Ax ≤ uT b = 2s+1 for an integer s. Given that uT Ax is an even number, the
inequality uT Ax ≤ 2s is also valid. As any fractional solution x∗ satisfies uT Ax∗ ≤ uT b = 2s+1,
then inequality uT Ax ≤ 2s can maximally be violated by 1. This maximal violation is achieved
if uT Ax∗ = uT b, that is, if ui = 0 for all i such that Aix

∗ < bi. Dividing by two we obtain the
inequality

1
2
uT Ax∗ ≤ s (15)

which is valid, has all its coefficients integer and its maximal violation is 1
2 . We look for such

mod-2 cuts.

Let x∗ be a fractional solution and let Ax ≤ b be a system of valid inequalities such that
Ax∗ = b. In our case, this system is formed by all the binding inequalities of the last LP plus
an inequality for each symmetry equality. We have to find a 0-1 vector u such that uT A is even
and uT b is odd. Then we have to solve the following system of congruences:

AT u ≡ 0 (mod 2) and bT u ≡ 1 (mod 2) (16)

Each solution u of (16) yields a maximally violated mod-2 cut. Usually, if there is a cut, then
there are many. Let us suppose that, after applying Gaussian elimination to system (16) there
are a number f of free variables. Given the values for these variables can be chosen in {0, 1}, we
have 2f different solutions for (16), although the corresponding mod-2 cuts may not be different.
A nice description of different strategies to select the cuts that are added to the LP can be found
in Wenger (2004). We have used the procedure implemented by Fricke and Oswald (2006) to
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solve (16). When a solution with free variables is obtained, we take the cut resulting from setting
all free variables to 0 and the cuts resulting from setting exactly one of the free variables to 1
and the remaining ones to 0, up to a maximum of 50 cuts.

Given that the previous procedure is computationally expensive and that we have faster
separation algorithms for Zigzag and Odd-cut inequalities (which are also mod-2 cuts), we call
this routine only before branching at the root node.

5.4 Initial relaxation and cutting plane algorithm

The initial LP relaxation contains the Odd-cut inequalities associated with the odd degree
vertices and with the connected components of the subgraph of G induced by the odd degree
vertices, if |S| is odd. At each iteration of the cutting plane algorithm the separation procedures
are called in the following order:

1. Odd cut separation heuristics.

2. Exact Odd-cut separation.

3. When no violated Odd-cut inequalities are found, run the Zigzag Separation procedures
1 and 2.

4. At the end of the root node, if an optimal solution has not been found, the mod-2 cuts
separation procedure is executed before branching.

The cutting plane procedure is applied at each node of the tree until no new violated in-
equalities are found or a stopping criterium, called tailing-off, is satisfied. In our implementation
the cutting plane stops when the increase in the objective function during the last 5 iterations
is less than 0.0004%. At the root node this percentage has been fixed to 0.0002%.

5.5 Upper bounds

In order to get good upper bounds that decrease the size of the search tree, a heuristic algorithm
based on the information given by the fractional solution x∗ at the end of each node has been
implemented.

Since a feasible solution for the WPP will be represented as a directed graph, in what follows
we need to distinguish between edges, that will be denoted by {i, j}, and arcs, denoted by (i, j).

The algorithm first builds a multigraph G∗ associated with x∗ in the following way. This
graph contains exactly bx∗ijc copies of an arc (i, j) when x∗ij ≥ 1, and one copy of arc (i, j) when
0.75 ≤ x∗i,j < 1. In addition, for each edge {i, j} such that x∗ij and x∗ji are less than 0.75, we add
one arc (i, j) or (j, i) to G∗. We add the arc (i, j) if x∗ij > 0.5 and x∗ji ≤ 0.5 or the arc (j, i) if
x∗ji > 0.5 and x∗ij ≤ 0.5. Otherwise we add the arc associated with the direction of lower cost.

Consider now the directed graph Gaux resulting from replacing each edge in the original
graph G by two opposite arcs. We assign infinite capacity and weights cij , cji to these arcs.
We add to Gaux one arc (j, i) for each pair of nodes i, j linked in G∗ by exactly one copy of
the arc (i, j) and such that the opposite arc (j, i) is not in G∗. These arcs are usually called
artificial arcs (since they represent the possibility of reorienting its corresponding opposite arc)
and have capacity 2 and weight 1

2(cji−cij). Now a minimum cost flow (fij) is computed on Gaux

with demands and supplies at each vertex defined by the difference between the number of arcs
entering to i and leaving from i in G∗.
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For each non artificial arc (i, j) in Gaux, fij additional copies of arc (i, j) are added to G∗.
In addition, for each artificial arc (j, i) with non zero flow we proceed as follows:

• if fji = 2 then the arc (i, j) in G∗ is replaced by its opposite arc (j, i).

• if fij = 1 then the arc (i, j) in G∗ is replaced by an edge {i, j}.

At this point G∗ can be a mixed graph. We then solve a minimum-cost matching problem
defined on a complete graph whose nodes are the ones incident with an odd number of edges in
G∗, and the edge costs are computed from the shortest paths in the original graph as follows.
Given two nodes i and j, the shortest paths from i to j and from j to i are computed. Then, the
average length of each of these two paths is defined as the sum of the average costs (cuv+cvu

2 ) of
its corresponding edges (u, v). The minimum of these two lengths is selected as the cost of the
edge. Then, for each edge in the optimal matching, we add to G∗ a copy of each original edge
in the corresponding shortest path. Each edge is oriented in the direction given by its smallest
cost and another similar flow problem is solved (see also Win 1989). We obtain a directed graph
representing a feasible solution for the WPP. This solution is improved by applying three simple
procedures described in Benavent et al. (2005). The two first ones look for cycles in the solution
graph such that after deleting them or reversing the direction of their arcs, a better solution
is obtained. The third one looks for directed paths that can be replaced by a shortest path to
obtain a better solution.

6 Computational experiments

We present here the computational results obtained on different sets of instances. The B&C
procedure has been coded in C/C++ using Cplex 9.1 MIP Solver with Concert Technol-
ogy 2.0. All the tests were run on an AMD Athlon with Dual Core Processor at 2.41GHz
and 2GB RAM with a time limit of 10 hours. In what follows we describe the characteris-
tics of the instances and how they were generated. All the test instances can be found in
http://www.uv.es/∼corberan/instancias.htm.

6.1 Data instances

We have tested the B&C procedure on large WPP and MCPP randomly generated instances
that are described next. Type A instances correspond to pure random graphs, while type B
instances are associated with graphs that try to imitate street networks.

Three parameters are considered to generate a WPP instance: the number of vertices n,
n ∈ {500, 1000, 1500, 2000, 3000}, the vertex degree d, d ∈ {3, 4, 5, 6}, and an integer number
a used to generate asymmetric costs, a ∈ {10, 20, 50}. First, vertex set V is constructed by
randomly generating n points in a square of size 1000×1000. For the instances of type A,
set E is obtained by generating n d

2 edges randomly selected as pairs of vertices (i, j). Edge
costs are defined as cij =bbij + 0.5c, where bij denotes the Euclidean distance between i and j.
If the resulting graph (V,E) is not connected, edges in d different random trees spanning the
connected components of the graph are also added to E. At this point we have an undirected
graph. In order to obtain asymmetric edge costs the first strategy proposed in Win (1987) is
applied. First, the value ca is computed as the a% of the average edge cost (a∈ {10, 20, 50}).
Then, for each edge e=(i, j)∈E, let k1 and k2 be two integer values randomly selected in the
interval [−ca, ca] and set cij = max{1, cij +k1}, and cji = max{1, cji+k2}. In this way we have
generated 60 pure random WPP instances named WA0531 to WA3065, where for example ‘WA’
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refers to a WPP instance of type A , ‘05’ means 500 vertices, ‘3’ is the vertex degree and ‘1’
stands for a = 10.

For the type B instances we proceed as above except in the edges generation step. Here, for
each vertex i∈V , the d edges connecting i to its d closest neighbors are added to E. The idea is
to avoid long edges crossing the graph that would not appear in real networks. If the resulting
graph is not connected, edges in d different minimal cost spanning trees are also added to E.
Furthermore, each edge (i, j)∈E such that there is a vertex k satisfying cij ≥ 0.98(cik + ckj) is
removed from E to avoid ‘almost parallel’ edges. We have obtained 60 WPP instances of type
B named WB0531 to WB3065.

Moreover, 60+60 MCPP instances have been generated in a similar way. The undirected
graphs are generated as above, again with n∈{500, 1000, 1500, 2000, 3000} and d∈{3, 4, 5, 6}. To
obtain mixed graphs each edge is transformed into an arc with probability p∈{0.25, 0.5, 0.75}.
When a given edge is decided to be changed into an arc, we choose one of its two possible
orientations with probability 0.5. If the resulting graph is not strongly connected, some arcs
joining different strongly connected components are changed back into edges. The 120 MCPP
instances are named MA0532 (the last ‘2’ refers to p = 0.25) to MB3067.

6.2 Computational results

Tables 10 and 11 show the characteristics of the instances above and the computational results
obtained on them. They contain the problem type and the number of instances of each set, the
number of nodes and the average, minimum and maximum number of edges (and arcs in the
case of mixed instances). In both tables the next column shows the number of optimal solutions
obtained for each set. For the solved instances (within the time limit of 10 hours), columns
“Time” and “B&C Nodes” present the average computing time (in seconds) and the number of
B&C nodes explored. Last column shows the average gap between the final lower bound and
the best feasible solution found for those unsolved instances for which a feasible solution was
found. In 4 out of 33 unsolved instances (all of them WPPs with 3000 nodes) the algorithm
ran out of memory before finishing the study of the root node and no execution of the heuristic
algorithm was made.

# of # of # of Edges # of Time B&C Gap
Set Instances Nodes Aver. Min Max Optima (sec.) Nodes (%)

WA05 12 500 1160.5 813 1518 12 9.9 3.7 -
WB05 12 500 1212.8 874 1555 12 14.5 0.6 -
WA10 12 1000 2316.8 1641 3018 12 168.1 27.1 -
WB10 12 1000 2433.9 1743 3110 12 174.0 2.5 -
WA15 12 1500 3493.1 2478 4530 11 188.7 75.3 0.01
WB15 12 1500 3654.6 2631 4670 12 471.8 24.3 -
WA20 12 2000 4644.6 3303 6036 12 288.0 68.7 -
WB20 12 2000 4826.3 3467 6129 8 64.6 62.7 0.12
WA30 12 3000 6961.3 4986 9066 6 167.1 225.8 0.01
WB30 12 3000 7140.8 5176 9085 2 3.4 110.0 0.19

Figure 10: Computational results on WPP instances

As can be seen in Table 10, our algorithm solved all but one of the WPP instances up to
1500 nodes. It was also capable of solving to optimality most of the 2000 nodes WPP instances
and some of the 3000 nodes ones. On the other hand, instances of type B (generated trying to
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imitate real networks) proved to be more difficult than those generated completely at random.
The results shown in the Table also confirm that our algorithm is capable of solving very large
WPP instances with up to 3000 nodes and 9000 edges. Up to our knowledge these are the
largest instances ever solved.

# of # of # of Edges # of Arcs # of Time B&C Gap
Set Inst. Nodes Aver. Min Max Aver. Min Max Opt. (sec.) Nodes (%)

MA05 12 500 615.1 351 1112 542.4 193 1082 12 3.2 0.7 -
MB05 12 500 626.3 320 1131 583.8 202 1174 12 7.5 0.4 -
MA10 12 1000 1235.3 693 2235 1083.9 340 2253 12 20.0 139.8 -
MB10 12 1000 1260.1 636 2293 1182.1 416 2327 11 78.6 4.0 0.01
MA15 12 1500 1851.7 1011 3423 1627.2 576 3329 11 83.5 38.1 0.02
MB15 12 1500 1880.2 964 3540 1750.5 615 3475 12 139.9 22.8 -
MA20 12 2000 2462.6 1355 4528 2182.8 733 4515 11 159.2 41.4 0.01
MB20 12 2000 2499.8 1243 4552 2329.3 850 4583 10 119.6 10.6 0.18
MA30 12 3000 3704.8 1999 6795 3254.3 1097 6603 8 584.7 15.9 0.09
MB30 12 3000 3746.3 1992 6799 3384.5 1206 6742 9 514.0 7.0 0.97

Figure 11: Computational results on MCPP instances

Table 11 reports the computational results obtained on the MCPP sets of instances. The
performance of the B&C procedure is even better on these types of instances with only 12 out
of 120 instances remaining unsolved. The algorithm solved to optimality instances with 3000
nodes and up to 9000 arcs and edges, and the average gap obtained on the unsolved instances
was less than 1%. Note that in this case instances of type A and B seem to be of similar
difficulty. Another interesting observation is that for a given number of links, instances with a
similar number of arcs and edges seem to be harder than those with a bigger proportion of arcs
or edges.

7 Conclusions

In this paper we have fully described the polyhedra associated with the WPP defined over
graphs with up to 4 vertices and 10 edges. Two new families of facet-inducing inequalities have
also been presented and, along with the Odd zigzag inequalities, have been proved to be mod-2
cut inequalities. Moreover, a Branch & Cut algorithm for the exact resolution of the WPP and
the MCPP has been described and computational results on several sets of instances have been
reported. These results show that the performance of our algorithm is very good, being capable
of solving instances of up to 3000 nodes and 9000 links. We think that these results confirm the
usefulness of the polyhedral approach to solving difficult combinatorial optimization problems.
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[2] E. Benavent, A. Corberán, E. Piñana, I. Plana & J.M. Sanchis (2005): “New Heuristics for
the Windy Rural Postman Problem”. Computers & Operations Research 32, 3111-3128.

[3] P. Brucker, The Chinese Postman Problem for mixed graphs, Proc. Int. Workshop. Lecture
Notes in Computer Science 100 (1981), 354-366.

[4] A. Caprara, M. Fischetti & A.N. Letchford (2000): “On the separation of maximally vio-
lated mod-k cuts”. Mathematical Programming 87, 37-56.
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