Skip to main content

Advertisement

Log in

Approximation algorithms for homogeneous polynomial optimization with quadratic constraints

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic constraints. Such optimization models have wide applications, e.g., in signal processing, magnetic resonance imaging (MRI), data training, approximation theory, and portfolio selection. Since polynomial functions are non-convex, the problems under consideration are all NP-hard in general. In this paper we shall focus on polynomial-time approximation algorithms. In particular, we first study optimization of a multi-linear tensor function over the Cartesian product of spheres. We shall propose approximation algorithms for such problem and derive worst-case performance ratios, which are shown to be dependent only on the dimensions of the model. The methods are then extended to optimize a generic multi-variate homogeneous polynomial function with spherical constraint. Likewise, approximation algorithms are proposed with provable approximation performance ratios. Furthermore, the constraint set is relaxed to be an intersection of co-centered ellipsoids; namely, we consider maximization of a homogeneous polynomial over the intersection of ellipsoids centered at the origin, and propose polynomial-time approximation algorithms with provable worst-case performance ratios. Numerical results are reported, illustrating the effectiveness of the approximation algorithms studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors and their estimation from diffusion weighted MRI. In: Karssemijer, N., Lelieveldt, B. (eds.) IPMI 2007, LNCS 4584, pp. 308–319 (2007)

  2. Ben-Tal A., Nemirovski A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization, Philadelphia (2001)

    MATH  Google Scholar 

  3. Dahl G., Leinaas J.M., Myrheim J., Ovrum E.: A tensor product matrix approximation problem in quantum physics. Linear. Algebra. Appl. 420, 711–725 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. De Athayde G.M., Flôres R.G. Jr.: Incorporating skewness and kurtosis in portfolio optimization: a multidimensional efficient set, 10. In: Satchell, S., Scowcroft, A. (eds) Advances in Portfolio Construction and Implementation, pp. 243–257. Butterworth-Heinemann, UK (2003)

    Chapter  Google Scholar 

  5. De Klerk E.: The complexity of optimizing over a simplex, hypercube or sphere: a short survey. Central Eur J. Oper. Res. 16, 111–125 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. De Klerk E., Laurent M., Parrilo P.A.: A PTAS for the minimization of polynomials of fixed degree over the simplex. Theor. Comput. Sci. 261, 210–225 (2006)

    Article  MathSciNet  Google Scholar 

  7. Fujisawa, K., Kojima, M., Nakata, K., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) User’s Manual—version 6.2.0, Research Report B-308, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan (1995)

  8. Ghosh, A., Tsigaridas, E., Descoteaux, M., Comon, P., Mourrain, B., Deriche, R.: A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the orientation distribution function in diffusion MRI. Computational Diffusion MRI Workshop (CDMRI’08), New York (2008)

  9. Goemans M.X., Williamson D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, version 1.2. http://cvxr.com/cvx (2010)

  11. Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing, pp. 10–19, ACM, New York (2003)

  12. He S., Luo Z.Q., Nie J., Zhang S.: Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization. SIAM J. Optim. 19, 503–523 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Henrion D., Lasserre J.B.: GloptiPoly: global optimization over polynomials with Matlab and SeDuMi. ACM Tran. Math. Soft 29, 165–194 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Henrion D., Lasserre J.B., Loefberg J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24, 761–779 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jondeau E., Rockinger M.: Optimal portfolio allocation under higher moments. Eur. Financ. Manage. 12, 29–55 (2006)

    Article  Google Scholar 

  16. Kofidis E., Regalia Ph.: On the best rank-1 approximation of higher order supersymmetric tensors. SIAM J. Matrix Anal. App. 23, 863–884 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kroó A., Szabados J.: Joackson-type theorems in homogeneous approximation. J. Appr. Theory 152, 1–19 (2008)

    Article  MATH  Google Scholar 

  18. Lasserre J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lasserre J.B.: Polynomials nonnegative on a grid and discrete representations. Trans. Am. Math. Soc. 354, 631–649 (2001)

    Article  MathSciNet  Google Scholar 

  20. Laurent M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds) Emerging Applications of Algebraic Geometry, Series: The IMA Volumes in Mathematics and its Applications, vol. 149, Springer, Berlin (2009)

    Google Scholar 

  21. Ling C., Nie J., Qi L., Ye Y.: Biquadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J. Optim. 20, 1286–1310 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Luo Z.Q., Sidiropoulos N.D., Tseng P., Zhang S.: Approximation bounds for quadratic optimization with homogeneous quadratic constraints. SIAM J. Optim. 18, 1–28 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Luo Z.Q., Sturm J.F., Zhang S.: Multivariate nonnegative quadratic mappings. SIAM J. Optim. 14, 1140–1162 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Luo Z.Q., Zhang S.: A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraints. SIAM J. Optim. 20, 1716–1736 (2010)

    Article  MathSciNet  Google Scholar 

  25. Mandelbrot B., Hudson R.L.: The (Mis)Behavior of Markets. Basic Books, New York (2004)

    MATH  Google Scholar 

  26. Maricic B., Luo Z.Q., Davidson T.N.: Blind constant modulus equalization via convex optimization. IEEE Trans. Signal Process. 51, 805–818 (2003)

    Article  MathSciNet  Google Scholar 

  27. Maringer D., Parpas P.: Global optimization of higher order moments in portfolio selection. J. Glob. Optim. 43, 219–230 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Micchelli C.A., Olsen P.: Penalized maximum-likelihood estimation, the Baum-Welch algorithm, diagonal balancing of symmetric matrices and applications to training acoustic data. J. Comput. Appl. Math. 119, 301–331 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nemirovski A., Roos C., Terlaky T.: On maximization of quadratic form over intersection of ellipsoids with common center. Math. Prog. A 86, 463–473 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nesterov Yu.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9, 141–160 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nesterov Yu. et al.: Squared functional systems and optimization problems. In: Frenk, J.B.G. (ed.) High Performance Optimization, pp. 405–440. Kluwer Academic Press, Dordrecht (2000)

    Google Scholar 

  32. Nesterov, Yu.: Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper. UCL, Louvain-la-Neuve, Belgium (2003)

  33. Ni Q., Qi L., Wang F.: An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Automat. Contr. 53, 1096–1107 (2008)

    Article  MathSciNet  Google Scholar 

  34. Parpas, P., Rustem, B.: Global optimization of the scenario generation and portfolio selection problems. ICCSA 2006, LNCS 3982, pp. 908–917 (2006)

  35. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD Dissertation, California Institute of Technology, CA (2000)

  36. Parrilo P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Prog. B 96, 293–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Prakash A.J., Chang C.H., Pactwa T.E.: Selecting a portfolio with skewness: recent evidence from US, European, and Latin American equity markets. J Banking Financ. 27, 1375–1390 (2003)

    Article  Google Scholar 

  38. Qi L.: Extrema of a real polynomial. J. Glob. Optim. 30, 405–433 (2004)

    Article  MATH  Google Scholar 

  39. Qi L.: Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40, 1302–1324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Qi L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363–1377 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Qi L., Teo K.L.: Multivariate polynomial minimization and its applications in signal processing. J. Glob. Optim. 26, 419–433 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Qi L., Wan Z., Yang Y.F.: Global minimization of normal quadratic polynomials based on global descent directions. SIAM J. Optim. 15, 275–302 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  43. So A.M.C., Ye Y., Zhang J.: A unified theorem on SDP rank reduction. Math. Oper. Res. 33, 910–920 (2008)

    Article  MathSciNet  Google Scholar 

  44. Soare S., Yoon J.W., Cazacu O.: On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming. Int. J. Plast. 24, 915–944 (2008)

    Article  MATH  Google Scholar 

  45. Sturm J.F.: SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11&12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  46. Toh K.C., Todd M.J., Tutuncu R.H.: SDPT3—a Matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  47. Varjú P.P.: Approximation by homogeneous polynomials. Const. Appr. 26, 317–337 (2007)

    Article  MATH  Google Scholar 

  48. Ye Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Prog. 84, 219–226 (1999)

    MATH  Google Scholar 

  49. Ye Y.: Approximating global quadratic optimization with convex quadratic constraints. J. Glob. Optim. 15, 1–17 (1999)

    Article  MATH  Google Scholar 

  50. Zhang S.: Quadratic maximization and semidefinite relaxation. Math. Prog. A 87, 453–465 (2000)

    Article  MATH  Google Scholar 

  51. Zhang S., Huang Y.: Complex quadratic optimization and semidefinite programming. SIAM J. Optim. 16, 871–890 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Zhang X., Qi L., Ye Y.: The cubic spherical optimization problems, Working Paper. The Hong Kong Polytechnic University, Hong Kong (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Li, Z. & Zhang, S. Approximation algorithms for homogeneous polynomial optimization with quadratic constraints. Math. Program. 125, 353–383 (2010). https://doi.org/10.1007/s10107-010-0409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0409-z

Keywords

Mathematics Subject Classification (2000)