Skip to main content
Log in

Fractional packing in ideal clutters

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper presents a generic scheme for fractional packing in ideal clutters. Consider an ideal clutter with a nonnegative capacity function on its vertices. It follows from ideality that for any nonnegative capacity the total multiplicity of an optimal fractional packing is equal to the minimum capacity of a vertex cover. Our scheme finds an optimal packing using at most n edges with positive multiplicities, performing minimization for the clutter at most n times and minimization for its blocker at most n 2 times, where n denotes the cardinality of the vertex set. Applied to the clutter of dijoins (directed cut covers), the scheme provides the first combinatorial polynomial-time algorithm for fractional packing of dijoins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barahona F.: Fractional packing of T-joins. SIAM J. Discret. Math. 17, 661–669 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cornuéjols G.: Combinatorial Optimization—Packing and Covering. Pennsylvania, SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  3. Edmonds J., Fulkerson D.R.: Bottleneck extrema. J. Combin. Theor. 8, 299–306 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frank A.: How to make a digraph strongly connected. Combinatorica 1, 145–153 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fulkerson D.R.: Blocking polyhedra. In: Harris, B. (ed.) Proceedings Advanced Seminar Madison, Wisconsin, 1969, pp. 93–112. Academic Press, New York (1970)

    Google Scholar 

  6. Fulkerson D.R.: Blocking and anti-blocking pairs of polyhedra. Math Program 1, 168–194 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gabow H.N.: Centroids, representations, and submodular flows. J. Algorithm. 18, 586–628 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gabow H.N., Manu K.S.: Packing algorithms for arborescences (and spanning trees) in capacitated graphs. Math. Programm. 82, 83–109 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Grötschel M., Lovász L., Schrijver A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  10. Hao J., Orlin J.B.: A faster algorithm for finding the minimum cut in a directed graph. J. Algorithm. 17, 424–446 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iwata S., Kobayashi Y.: An algorithm for minimum cost arc-connectivity orientations. Algorithmica 56, 437–447 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lehman A.: On the width-length inequality. Math. Program. 17, 403–417 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lucchesi C.L., Younger D.H.: A minimax theorem for directed graphs. J. Lond. Math. Soc. s2–17, 369–374 (1978)

    Article  MathSciNet  Google Scholar 

  14. Schrijver A.: A counterexample to a conjecture of Edmonds and Giles. Discret. Math. 32, 213–214 (1980)

    MathSciNet  MATH  Google Scholar 

  15. Schrijver A.: Min–max results in combinatorial optimization. In: Bachem, A., Gtötschel, M., Korte, B. (eds) Mathematical Programming—The State of the Art (Bonn, 1982), pp. 439–500. Springer, Berlin (1983)

    Chapter  Google Scholar 

  16. Schrijver A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  17. Shepherd, F.B., Vetta, A.: Visualizing, finding and packing dijoins. In: Graph Theory and Combinatorial Optimization GERAD 25th Anniversary Volumes, pp. 1–36. Springer, Berlin (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Matsuoka.

Additional information

Preliminary version of this paper appeared in Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007, pp. 1181–1186.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, Y. Fractional packing in ideal clutters. Math. Program. 133, 159–169 (2012). https://doi.org/10.1007/s10107-010-0410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0410-6

Keywords

Mathematics Subject Classification (2000)