Skip to main content
Log in

Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Due to their fundamental nature and numerous applications, sphere constrained polynomial optimization problems have received a lot of attention lately. In this paper, we consider three such problems: (i) maximizing a homogeneous polynomial over the sphere; (ii) maximizing a multilinear form over a Cartesian product of spheres; and (iii) maximizing a multiquadratic form over a Cartesian product of spheres. Since these problems are generally intractable, our focus is on designing polynomial-time approximation algorithms for them. By reducing the above problems to that of determining the L 2-diameters of certain convex bodies, we show that they can all be approximated to within a factor of Ω((log n/n)d/2–1) deterministically, where n is the number of variables and d is the degree of the polynomial. This improves upon the currently best known approximation bound of Ω((1/n)d/2–1) in the literature. We believe that our approach will find further applications in the design of approximation algorithms for polynomial optimization problems with provable guarantees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barvinok A.: Integration and optimization of multivariate polynomials by restriction onto a random subspace. Found. Comput. Math. 7(2), 229–244 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brieden A., Gritzmann P., Kannan R., Klee V., Lovász L., Simonovits M.: Deterministic and randomized polynomial-time approximation of radii. Mathematika 48, 63–105 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Golub G.H., Van Loan C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  4. Gritzmann P., Klee V.: Inner and outer j-radii of convex bodies in finite-dimensional normed spaces. Discret. Comput. Geom. 7(1), 255–280 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grötschel M., Lovász L., Schrijver A.: Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, vol. 2, 2nd corrected edn. Springer, Berlin (1993)

    Google Scholar 

  6. Han D., Dai H.H., Qi L.: Conditions for strong ellipticity of anisotropic elastic materials. J. Elast. 97(1), 1–13 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, S., Li, Z., Zhang, S.: General constrained polynomial optimization: an approximation approach. Technical Report of SEEM2009–06, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong (2009)

  8. He S., Li Z., Zhang S.: Approximation algorithms for homogeneous polynomial optimization with quadratic constraints. Math. Program. Ser. B 125(2), 353–383 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hillar, C.J., Lim, L.H.: Most Tensor Problems are NP Hard (2009, Preprint)

  10. Ishteva M., Absil P.A., van Huffel S., de Lathauwer L.: On the best low multilinear rank approximation of higher-order tensors. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds) Recent Advances in Optimization and its Applications in Engineering, pp. 145–164. Springer, Berlin (2010)

    Chapter  Google Scholar 

  11. Kannan, R.: Spectral methods for matrices and tensors. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC 2010), pp. 1–12 (2010)

  12. Khot S., Naor A.: Linear equations modulo 2 and the L 1 diameter of convex bodies. SIAM J. Comput. 38(4), 1448–1463 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Klerk E.: The complexity of optimizing over a simplex, hypercube or sphere: a short survey. Cent. Eur. J. Oper. Res. 16(2), 111–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Klerk E., Laurent M., Parrilo P.A.: A PTAS for the minimization of polynomials of fixed degree over the simplex. Theor. Comput. Sci. 361(2–3), 210–225 (2006)

    MATH  Google Scholar 

  15. Kofidis, E., Regalia, P.A.: Tensor approximation and signal processing applications. In: Olshevsky, V. (ed.) Structured Matrices in Mathematics, Computer Science and Engineering I: Proceedings of an AMS–IMS–SIAM Joint Summer Research Conference, Contemporary Mathematics, vol. 280, pp. 103–133. American Mathematical Society, Providence, Rhode Island (2001)

  16. Kolda T.G., Bader B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kwapien S.: Decoupling inequalities for polynomial chaos. Ann. Probab. 15(3), 1062–1071 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lasserre J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laurent M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds) Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and Its Applications, vol. 149, pp. 157–270. Springer Science+Business Media, LLC, New York (2009)

    Google Scholar 

  20. Lim L.H., Comon P.: Multiarray signal processing: tensor decomposition meets compressed sensing. Comptes Rendus Mécanique 338(6), 311–320 (2010)

    Article  MATH  Google Scholar 

  21. Ling C., Nie J., Qi L., Ye Y.: Biquadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J. Optim. 20(3), 1286–1310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luo Z.Q., Zhang S.: A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraints. SIAM J. Optim. 20(4), 1716–1736 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nesterov, Yu.: Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper 2003071, Université Catholique de Louvain, Belgium (2003)

  24. Nie, J.: An approximation bound analysis for Lasserre’s relaxation in multivariate polynomial optimization (2009, Preprint)

  25. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena (2000)

  26. Qi L.: Eigenvalues of a real supersymmetric tensor. J. Symbol. Comput. 40(6), 1302–1324 (2005)

    Article  MATH  Google Scholar 

  27. Qi L., Dai H.H., Han D.: Conditions for strong ellipticity and M-Eigenvalues. Front. Math. China 4(2), 349–364 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qi L., Wang F., Wang Y.: Z-Eigenvalue methods for a global polynomial optimization problem. Math. Program. Ser. A 118(2), 301–316 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reznick B.: Some concrete aspects of Hilbert’s 17th problem. In: Delzell, C.N., Madden, J.J. (eds) Real Algebraic Geometry and Ordered Structures, Contemporary Mathematics, vol. 253, pp. 251–272. American Mathematical Society, Providence Rhode Island (2000)

    Google Scholar 

  30. So A.M.C., Ye Y., Zhang J.: A unified theorem on SDP rank reduction. Math. Oper. Res. 33(4), 910–920 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Weiland S., van Belzen F.: Singular value decompositions and low rank approximations of tensors. IEEE Trans. Signal Process. 58(3), 1171–1182 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Man-Cho So.

Additional information

This research was supported by the Hong Kong Research Grants Council (RGC) General Research Fund (GRF) Projects CUHK 416908 and CUHK 419409.

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, A.MC. Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems. Math. Program. 129, 357–382 (2011). https://doi.org/10.1007/s10107-011-0464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0464-0

Keywords

Mathematics Subject Classification (2000)

Navigation