Skip to main content
Log in

Random algorithms for convex minimization problems

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper deals with iterative gradient and subgradient methods with random feasibility steps for solving constrained convex minimization problems, where the constraint set is specified as the intersection of possibly infinitely many constraint sets. Each constraint set is assumed to be given as a level set of a convex but not necessarily differentiable function. The proposed algorithms are applicable to the situation where the whole constraint set of the problem is not known in advance, but it is rather learned in time through observations. Also, the algorithms are of interest for constrained optimization problems where the constraints are known but the number of constraints is either large or not finite. We analyze the proposed algorithm for the case when the objective function is differentiable with Lipschitz gradients and the case when the objective function is not necessarily differentiable. The behavior of the algorithm is investigated both for diminishing and non-diminishing stepsize values. The almost sure convergence to an optimal solution is established for diminishing stepsize. For non-diminishing stepsize, the error bounds are established for the expected distances of the weighted averages of the iterates from the constraint set, as well as for the expected sub-optimality of the function values along the weighted averages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H.: Projection algorithms and monotone operators. Ph.D. thesis, Simon Frazer University, Canada (1996)

  3. Bauschke H.H.: Projection algorithms: results and open problems. In: Butnariu, D., Censor, Y., Reich, Y. (eds) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, pp. 11–22. Elsevier, Amsterdam (2001)

    Google Scholar 

  4. Bauschke H.H., Borwein J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke H.H., Combettes H.H., Luke D.R.: Hybrid projection-reflection method for phase retrieval. J. Opt. Soc. Am. A 20(6), 1025–1034 (2003)

    Article  Google Scholar 

  6. Beck A., Teboulle M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck A., Teboulle M.: Gradient-based algorithms with applications to signal-recovery problems. In: Eldar, Y., Palomar, D. (eds) Convex Optimization in Signal Processing and Communications, pp. 42–88. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  8. Bertsekas D.P.: A hybrid incremental gradient method for least squares. SIAM J. Optim. 7, 913–926 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsekas D.P.: A note on error bounds for convex and nonconvex programs. Comp. Optim. Appl. 12, 41–51 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertsekas, D.P.: Incremental Gradient, Subgradient and Proximal Methods for Convex Optimization: A Survey. Technical report, MIT, Cambridge, MA, USA, 2010, Lab. for Info. and Decision Systems, Report LIDS-P-2848, MIT (2010)

  11. Bertsekas, D.P.: Incremental Proximal Methods for Large Scale Convex Optimization. Technical report, MIT, Cambridge, MA, USA, 2010, Lab. for Info. and Decision Systems, Report LIDS-P-2847 (2010)

  12. Bertsekas D.P., Nedić A., Ozdaglar A.E.: Convex Analysis and Optimization. Athena Scientific, Cambridge (2003)

    MATH  Google Scholar 

  13. Bertsekas D.P., Tsitsiklis J.N.: Gradient convergence in gradient methods. SIAM J. Optim. 10(3), 627–642 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Borkar V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  15. Burke J.V., Ferris M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31(6), 1340–1359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burke J.V., Tseng P.: A unified analysis of Hoffman’s bound via Fenchel duality. SIAM J. Optim. 6(2), 265–282 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Capricelli T.D., Combettes P.L.: A convex programming algorithm for noisy discrete tomography. In: Herman, G.T., Kuba, A. (eds) Advances in Discrete Tomography and Its Applications, pp. 207–226. Birkháuser, Boston (2007)

    Chapter  Google Scholar 

  18. Cegielski A., Suchocka A.: Relaxed alternating projection methods. SIAM J. Optim. 19(3), 1093–1106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Combettes P.L.: Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Trans. Image Process. 6(4), 493–506 (1997)

    Article  Google Scholar 

  20. Deutsch F.: Rate of convergence of the method of alternating projections. In: Brosowski, B., Deutsch, F. (eds) Parametric Optimization and Approximation, vol. 76, pp. 96–107. Birkhäuser, Basel (1983)

    Google Scholar 

  21. Deutsch F., Hundal H.: The rate of convergence for the cyclic projections algorithm I: Angles between convex sets. J. Approx. Theory 142, 36–55 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deutsch F., Hundal H.: The rate of convergence for the cyclic projections algorithm II: Norms of nonlinear operators. J. Approx. Theory 142, 56–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deutsch F., Hundal H.: The rate of convergence for the cyclic projections algorithm III: regularity of convex sets. J. Approx. Theory 155, 155–184 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ermoliev Y.: Stochastic Programming Methods. Nauka, Moscow (1976)

    Google Scholar 

  25. Ermoliev Y.: Stochastic quasi-gradient methods and their application to system optimization. Stochastics 9(1), 1–36 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Ermoliev Y.: Stochastic quazigradient methods. In: Ermoliev, Y., Wets, R.J.-B. (eds) Numerical Techniques for Stochastic Optimization, pp. 141–186. Springer, NY (1988)

    Google Scholar 

  27. Eryilmaz A., Srikant R.: Fair resource allocation in wireless networks using queue-length-based scheduling and congestion control. IEEE/ACM Trans. Netw. 15, 1333–1344 (2007)

    Article  Google Scholar 

  28. Fabian M.J., Henrion R., Kruger A.Y., Outrata J.: Error bounds: necessary and sufficient conditions. Set-Valued Anal. 18, 121–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Facchinei F., Pang J.-S.: Finite-dimensional Variational Inequalities and Complementarity Problems, vol. I and II. Springer, New York (2003)

    Google Scholar 

  30. Georgiadis L., Neely M.J., Tassiulas L.: Resource allocation and cross-layer control in wireless networks. Found. Trends Netw. 1(1), 1–149 (2006)

    Article  Google Scholar 

  31. Gubin L.G., Polyak B.T., Raik E.V.: The method of projections for finding the common point of convex sets. U.S.S.R. Comput. Math. Math. Phys. 7(6), 1211–1228 (1967)

    Article  Google Scholar 

  32. Halperin I.: The product of projection operators. Acta Scientiarum Mathematicarum 23, 96–99 (1962)

    MathSciNet  MATH  Google Scholar 

  33. Huang J., Subramanian V.G., Agrawal R., Berry R.: Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks. IEEE J. Sel. Areas Commun., special issue on “Broadband Area Networks” 27(2), 226–234 (2009)

    Google Scholar 

  34. Kibardin V.M: Decomposition into functions in the minimization problem. Autom. Remote Control 40(9), 1311–1323 (1980)

    Google Scholar 

  35. Kiwiel K.C.: Convergence of approximate and incremental subgradient methods for convex optimization. SIAM J. Optim. 14(3), 807–840 (2003)

    Article  MathSciNet  Google Scholar 

  36. Knopp K.: Theory and Applications of Infinite Series. Blackie & Son Limited, Glasgow (1954)

    Google Scholar 

  37. Lewis A., Pang J.-S.: Error bounds for convex inequality systems. In: Crouzeix, J.-P., Martinez-Legaz, J.-E., Volle, M. (eds) Generalized Convexity, Generalized Monotonicity, pp. 75–110. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  38. Luo Z.-Q.: New error bounds and their applications to convergence analysis of iterative algorithms. Math. Program. Ser. B 88, 341–355 (2000)

    Article  MATH  Google Scholar 

  39. Luo Z.-Q., Tseng P.: Analysis of an approximate gradient projection method with applications to the backpropagation algorithm. Optim. Methods Softw. 4(2), 85–101 (1994)

    Article  MathSciNet  Google Scholar 

  40. Mangasarian, O.L.: Error Bounds for Nondifferentiable Convex Inequalities Under Strong Slater Constraint Qualification. Technical report, University of Wisconsin, Wisconsin (1996)

  41. Nedić A., Bertsekas D.P.: Incremental subgradient method for nondifferentiable optimization. SIAM J. Optim. 12, 109–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nesterov Yu.: Smooth minimization of non-smooth functions. Math. Program. Ser. A 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nesterov Yu.: A method of solving a convex programming problem with convergence rate of o(1/k 2). Sov. Math. Dokl. 27(2), 372–376 (1983)

    MATH  Google Scholar 

  44. Polyak B.T.: Minimization of unsmooth functionals. U.S.S.R. Comput. Math. Math. Phys. 9, 14–29 (1969)

    Article  Google Scholar 

  45. Polyak B.T.: Introduction to Optimization. Optimization Software Inc., New York (1987)

    Google Scholar 

  46. Polyak B.T.: Random algorithms for solving convex inequalities. In: Butnariu, D., Censor, Y., Reich, S. (eds) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, pp. 409–422. Elsevier, Amsterdam (2001)

    Google Scholar 

  47. Ram S.S., Nedić A., Veeravalli V.V.: Incremental stochastic sub-gradient algorithms for convex optimization. SIAM J. Optim. 20(2), 691–717 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Robbins H., Siegmund D.: A convergence theorem for nonnegative almost supermartingales and some applications. In: Rustagi, J.S. (ed.) Optimizing Methods in Statistics, pp. 233–257.  Academic Press, New York (1971)

    Google Scholar 

  49. Solodov M.V.: Incremental gradient algorithms with stepsizes bounded away from zero. Comput. Optim. Algorithms 11(1), 23–35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stolyar A.L.: On the asymptotic optimality of the gradient scheduling algorithm for multiuser throughput allocation. Oper. Res. 53(1), 12–25 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tseng, P.: Successive Projection Under a Quasi-cyclic Order. Technical report, LIDS-P-1938, Massachusetts Institute of Technology, MA (1990)

  52. Tseng P.: An incremental gradient(-projection) method with momentum term and adaptive stepsize rule. SIAM J. Optim. 8(2), 506–531 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. submitted to SIAM J. Optim. (2008)

  54. von Neumann J.: Functional Operators. Princeton University Press, Princeton (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelia Nedić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedić, A. Random algorithms for convex minimization problems. Math. Program. 129, 225–253 (2011). https://doi.org/10.1007/s10107-011-0468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0468-9

Keywords

Mathematics Subject Classification (2000)

Navigation