Skip to main content
Log in

Enclosing ellipsoids and elliptic cylinders of semialgebraic sets and their application to error bounds in polynomial optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper is concerned with a class of ellipsoidal sets (ellipsoids and elliptic cylinders) in \({\mathbb{R}^m}\) which are determined by a freely chosen m × m positive semidefinite matrix. All ellipsoidal sets in this class are similar to each other through a parallel transformation and a scaling around their centers by a constant factor. Based on the basic idea of lifting, we first present a conceptual min-max problem to determine an ellipsoidal set with the smallest size in this class which encloses a given subset of \({\mathbb{R}^m}\) . Then we derive a numerically tractable enclosing ellipsoidal set of a given semialgebraic subset of \({\mathbb{R}^m}\) as a convex relaxation of the min-max problem in the lifting space. A main feature of the proposed method is that it is designed to incorporate into existing SDP relaxations with exploiting sparsity for various optimization problems to compute error bounds of their optimal solutions. We discuss how we adapt the method to a standard SDP relaxation for quadratic optimization problems and a sparse variant of Lasserre’s hierarchy SDP relaxation for polynomial optimization problems. Some numerical results on the sensor network localization problem and polynomial optimization problems are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proceedings of the Third International Symposium on Information Processing in Sensor Networks. ACM press, New York, pp. 46–54 (2004)

  2. Blair J.R.S., Peyton B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu des, J.W.H. (eds) Graph Theory and Sparse Matrix Computation, pp. 1–29. Springer, New York (1993)

    Chapter  Google Scholar 

  3. Borchers B.: CSDP 2.3 users guide. Optim. Methods Softw. 11 & 12, 597–611 (1999)

    Article  MathSciNet  Google Scholar 

  4. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. In: SIAM Studies in Applied Mathematics, vol. 15, SIAM, Philadelphia (1994)

  5. Faraut J., Korányi A.: Analysis on Symmetric Cones. Oxford University Press, Oxford, UK (1994)

    MATH  Google Scholar 

  6. Fujie T., Kojima M.: Semidefinite relaxation for nonconvex programs. J. Glob. Optim. 10, 367–380 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) User’s Manual—Version 7.0.5. Research Report B-448. Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo, Japan (2008)

  8. Fujisawa, K., Kim, S., Kojima, M., Okamoto, Y., Yamashita, M.: User’s Manual for SparseCoLO: Conversion Methods for SPARSE COnic-form Linear Optimization Problems. Research Report B-453. Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo, Japan (2009)

  9. Fukuda M., Kojima M., Murota K., Nakata K.: Exploiting sparsity in semidefinite programming via matrix completion I: general framework. SIAM J. Optim. 11, 647–674 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gron R., Johnson C.R., Sá E.M., Wolkowicz H.: Positive definite completions of partial hermitian matrices. Linear Algebra Appl. 58, 109–124 (1984)

    Article  MathSciNet  Google Scholar 

  11. Fulkerson D.R., Gross O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. GLOBAL Library. http://www.gamsworld.org/global/globallib.htm

  13. Hol C.W.J., Scherer C.W.: Sum of squares relaxations for polynomial semi-definite programming. In: De Moor, B., Motmans, B. (eds) Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems, pp. 1–10. Leuven, Belgium (2004)

    Google Scholar 

  14. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948. Interscience, New York, 187–204 (1948); reprinted In: Moser J. (eds) Fritz John, Collected Papers 2, Birkhäuser Boston, Boston, 543–560 (1985)

  15. Khachiyan L.G.: Rounding of polytopes in the real number model of computation. Math. Oper. Res. 21, 307–320 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim S., Kojima M., Waki H.: Exploiting sparsity in SDP relaxation for sensor network localization. SIAM J. Optim. 20(1), 192–215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, S., Kojima, M., Waki, H., Yamashita, M.: SFSDP: a sparse version of full semidefinite programming relaxation for sensor network localization problem (To appear in ACM Transactions on Mathematical Software)

  18. Kim S., Kojima M., Mevissen M., Yamashita M.: Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion. Math. Program. Ser. B 129, 33–68 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kobayashi K., Kim S., Kojima M.: Correlative sparsity in primal-dual interior-point methods for LP, SDP and SOCP. Appl. Math. Opt. 58(1), 69–88 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kojima M., Kim S., Waki H.: A general framework for convex relaxation of polynomial optimization over cones. J. Oper. Res. Soc. Jpn. 46(2), 125–144 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Kojima, M.: Sums of squares relaxations of polynomial semidefinite programs. Research Report B-397. Department of Mathematical and computing Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan (2003)

  22. Kojima M., Kim S., Waki H.: Sparsity in sums of squares of polynomials. Math. Program. 103, 45–62 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kojima M., Muramatsu M.: An extension of sums of squares relaxations to polynomial optimization problems over symmetric cones. Math. Program. 110, 315–336 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kojima M., Muramatsu M.: A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones. Comput. Optim. Appl. 42, 31–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kumar P., Yildirim E.A.: Minimum volume enclosing ellipsoids and core sets. J. Optim. Theory Appl. 126, 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lasserre J.B.: Global optimization with polynomials and the problems of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lasserre J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17(3), 822–843 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. More J.J., Garbow B.S., Hillstrom K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nakata K., Fujisawa K., Fukuda M., Kojima M., Murota K.: Exploiting sparsity in semidefinite programming via matrix completion II: Implementation and numerical results. Math. Program. 95, 303–327 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nash S.G.: Newton-type minimization via the Lanczos method. SIAM J. Numer. Anal. 21, 770–788 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nemirovski A., Roos C., Terlaky T.: On maximization of quadratic form over intersection of ellipsoids with common center. Math. Program. 86, 463–473 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nie J., Demmel J.W.: Minimum ellipsoid bounds for solutions of polynomial systems via sum of squares. J. Glob. Optim. 33, 511–525 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Poljak S., Rendl F., Wolkowicz H.: A recipe for semidefinite relaxation for (0,1)-quadratic programming. J. Glob. Optim. 7, 51–73 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Putinar M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schmieta S.H., Alizadeh F.: Extension of primal-dual interior point algorithms to symmetric cones. Math. Prog. 96, 409–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shor N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25, 1–11 (1987)

    MathSciNet  MATH  Google Scholar 

  37. So A.M., Ye Y.: Theory of semidefinite programming for sensor network localization. Math. Program. 109, 367–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Strum J.F.: SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11 & 12, 625–653 (1999)

    Article  Google Scholar 

  39. Sun P., Freund R.M.: Computation of minimum volume covering ellipsoids. Oper. Res. 52, 690–706 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Toh K.C.: Primal-dual path-following algorithms for determinant maximization problems with linear matrix inequalities. Comput. Optim. Appl. 14, 309–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tutuncu R.H., Toh K.C., Todd M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95, 189–217 (2003)

    Article  MathSciNet  Google Scholar 

  42. Vandenberghe L., Boyd S., Wu S.-P.: Determinant maximization with linear matrix inequality constraints. SIAM J. Matrix Anal. Appl. 19, 499–533 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Waki H., Kim S., Kojima M., Muramatsu M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17, 218–242 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Waki H., Kim S., Kojima M., Muramatsu M., Sugimoto H.: SparsePOP: a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35, 15 (2008)

    Article  MathSciNet  Google Scholar 

  45. Yildirim E.A.: On the minimum volume covering ellipsoid of ellipsoids. SIAM J. Optim. 17, 621–641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Kojima.

Additional information

M. Kojima research was partially supported by Grant-in-Aid for Scientific Research (B) 19310096.

M. Yamashita’s research was supported by Grant-in-Aid for Young Scientists (B) 21710148.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojima, M., Yamashita, M. Enclosing ellipsoids and elliptic cylinders of semialgebraic sets and their application to error bounds in polynomial optimization. Math. Program. 138, 333–364 (2013). https://doi.org/10.1007/s10107-012-0515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0515-1

Mathematics Subject Classification (2010)