Skip to main content
Log in

Sparse solutions to random standard quadratic optimization problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The standard quadratic optimization problem (StQP) refers to the problem of minimizing a quadratic form over the standard simplex. Such a problem arises from numerous applications and is known to be NP-hard. In this paper we focus on a special scenario of the StQP where all the elements of the data matrix Q are independently identically distributed and follow a certain distribution such as uniform or exponential distribution. We show that the probability that such a random StQP has a global optimal solution with k nonzero elements decays exponentially in k. Numerical evaluation of our theoretical finding is discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barany I., Vempala S., Vetta A.: Nash equilibria in random games. Random Struct. Algorithms 31(4), 391–405 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 232–241 (2003)

  3. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM Classics in Applied Mathematics, Philadelphia (1994)

  4. Bomze I.M.: On standard quadratic optimization problems. J. Global Optim. 13, 369–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bomze I.M., D M., de Klerk E., Roos C., Quist A.J., Terlaky T.: On copositive programming and standard quadratic optimization problems. J. Global Optim. 18, 301–320 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bomze I.M., de Klerk E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Global Optim. 24, 163–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bomze, I.M., Locatelli, M.: Separable standard quadratic optimization problems. Optim. Lett. (2011). doi:10.1007/s11590-011-0309-z

  8. Bomze I.M., Locatelli M., Tardella F.: New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability. Math. Program. 115(1), 31–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruckstein, A.M., Elad, M., Zibulevsky, M.: A non-negative and sparse enough solution of an underdetermined linear system of equations is unique. In: IEEE Xplore, 3rd International Symposium on Communications, Control and Signal Processing, ISCCSP, pp. 762–767 (2008)

  10. Burer S., Anstreicher K.M., Duer M.: The difference between 5 × 5 doubly nonnegative and completely positive matrices. Linear Algebra Appl. 431, 1539–1552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candés E., Wakin M.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  12. Candés E., Romberg J., Tao T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  13. David H.A., Nagaraja H.N.: Order Statistics. Wiley, NJ (2003)

    Book  MATH  Google Scholar 

  14. de Klerk E., Pasechnik D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875–892 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donoho D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  16. Gibbons L.E., Hearn D.W., Pardalos P., Ramana M.V.: Continuous characterizations of the maximal clique problem. Math. Oper. Res. 22, 754–768 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goldberg, A.V., Marchetti-Spaccamela, A.: On finding the exact solution of a zero-one knapsack problem. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 359–368 (1984)

  18. Grant, M., Boyd, S., Ye, Y.: CVX Users’ Guide (2007). http://www.stanford.edu/~boyd/cvx/cvx_usrguide.pdf.

  19. Hager W.W., Pardalos P.M., Roussos I.M., Sahinoglou H.D.: Active constraints, indefinite quadratic test problems, and complexity. J. Opt. Theor. Appl. 68, 499–511 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, J., Mitchell, J.E., Pang, J.S.: An LPCC approach to nonconvex quadratic programs. Math. Program. Ser. A. doi:10.1007/s10107-010-0426-y

  21. Irabaki T., Katoh N.: Resource Allocation Problems: Algorithmic Approaches. MIT Press, Cambridge (1988)

    Google Scholar 

  22. Kaplan W.: A test for copositive matrices. Linear Algebra Appl. 313, 203–206 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Markowitz H.M.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  24. Mukherjee, L., Singh, V., Peng, J., Hinrichs, C.: Learning Kernels for variants of normalized cuts: convex relaxations and applications. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco (2010)

  25. Murty K.G., Kabadi S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39, 117–129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Scozzari A., Tardella F.: A clique algorithm for standard quadratic programming. Discrete Appl. Math. 156, 2439–2448 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Toh, K.C., Tütüncü, R.H., Todd, M.: On the implementation and usage of SDPT3 (2006). http://www.math.nus.edu.sg/~mattohkc/guide4-0-draft.pdf

  28. Väliaho H.: Quadratic programming criteria for copositive matrices. Linear Algebra Appl. 119, 163–182 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wigner E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang S., Li X.: Algorithms for determining the copositivity of a given matrix. Linear Algebra Appl. 430, 609–618 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu, Z., Dang, C., Ye, Y.: A FPTAS for Computing a Symmetric Leontief Competitive Economy Equilibrium. Math. Program. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Peng, J. & Zhang, S. Sparse solutions to random standard quadratic optimization problems. Math. Program. 141, 273–293 (2013). https://doi.org/10.1007/s10107-012-0519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0519-x

Keywords

Mathematics Subject Classification

Navigation