Skip to main content
Log in

Risk averse elastic shape optimization with parametrized fine scale geometry

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Shape optimization of the fine scale geometry of elastic objects is investigated under stochastic loading. Thus, the object geometry is described via parametrized geometric details placed on a regular lattice. Here, in a two dimensional set up we focus on ellipsoidal holes as the fine scale geometric details described by the semiaxes and their orientation. Optimization of a deterministic cost functional as well as stochastic loading with risk neutral and risk averse stochastic cost functionals are discussed. Under the assumption of linear elasticity and quadratic objective functions the computational cost scales linearly in the number of basis loads spanning the possibly large set of all realizations of the stochastic loading. The resulting shape optimization algorithm consists of a finite dimensional, constraint optimization scheme where the cost functional and its gradient are evaluated applying a boundary element method on the fine scale geometry. Various numerical results show the spatial variation of the geometric domain structures and the appearance of strongly anisotropic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G.: Shape Optimization by the Homogenization Method, vol. 146. Springer Applied Mathematical Sciences, Berlin (2002)

    Book  Google Scholar 

  2. Allaire G., Bonnetier E., Francfort G., Jouve F.: Shape optimization by the homogenization method. Numerische Mathematik 76, 27–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire G., Jouve F.: A level-set method for vibration and multiple loads structural optimization. Comput. Methods Appl. Mech. Eng. 194(30–33), 3269–3290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire G., Jouve F., Maillot H.: Topology optimization for minimum stress design with the homogenization method. Struct. Multidisc. Opt. 28, 87–98 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Allaire G., Kohn R.V.: Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Euro. J. Mech. Solids 12(6), 839–878 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Ambrosio L., Buttazzo G.: An optimal design problem with perimeter penalization. Calculus Variations Partial Differ. Equ. 1, 55–69 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bebendorf, M.: Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, vol. 63 of Lecture Notes in Computational Science and Engineering (LNCSE). Springer, Berlin, 2008. ISBN 978-3-540-77146-3

  8. Ben-Tal A., El-Ghaoui L., Nemirovski A.: Robust Optimization. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  9. Bendsøe M.P.: Optimization of structural topology, shape, and material. Springer, Berlin (1995)

    Book  Google Scholar 

  10. Chambolle A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167(3), 211–233 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cherkaev, A., Cherkaeva, E.: Optimal design for uncertain loading conditions. In: V. Berdichevsky, V. Jikov, G. Papanicolaou (eds.) “Homogenization”, vol. 50 of Series on Advances in Mathematics for Applied Sciences, pp. 193–213 World Scientific, Singapore (1999)

  12. Cherkaev A., Cherkaeva E.: Principal compliance and robust optimal design. J. Elast. 72, 71–98 (2003)

    Article  MATH  Google Scholar 

  13. Ciarlet, P.G.: Mathematical Elasticity Volume I: Three-Dimensional Elasticity, vol. 20. Studies in Mathematics and its Applications, North-Holland (1988)

  14. Clements D., Rizzo F.: A method for the numerical solution of boundary value problems governed by second-order elliptic systems. IMA J. Appl. Math. 22, 197–202 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Conti S., Held H., Pach M., Rumpf M., Schultz R.: Shape optimization under uncertainty—a stochastic programming perspective. SIAM J. Optim. 19, 1610–1632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conti S., Held H., Pach M., Rumpf M., Schultz R.: Risk averse shape optimization. SIAM J. Cont. Optim. 49(3), 927–947 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Gournay F., Allaire G., Jouve F.: Shape and topology optimization of the robust compliance via the level set method. ESAIM: Cont. Optim. Calculus Var. 14, 43–70 (2007)

    Article  Google Scholar 

  18. Delfour, M.C., Zolésio, J.: Shapes and geometries: analysis, differential calculus and optimization. Adv. Des. Control 4. SIAM, Philadelphia (2001)

  19. Evans, L.C.: Partial Differential Equations, vol. 19. AMS Graduate Studies in Mathematics (2002)

  20. Guedes J.M., Rodrigues H.C., Bendsøe M.P.: A material optimization model to approximate energy bounds for cellular materials under multiload conditions. Struct. Multidiscip. Optim. 25, 446–452 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hackbusch W.: Integral Equations, vol. 120 of International Series of Numerical Mathematics. Birkhäuser Verlag, Basel (1995)

    Google Scholar 

  22. Huyse, L.: Free-form airfoil shape optimization under uncertainty using maximum expected value and second-order second-moment strategies. ICASE report ; no. 2001-18. ICASE, NASA Langley Research Center Available from NASA Center for Aerospace Information, Hampton, VA (2001)

  23. Lenz, M.: Modellierung und Simulation des effektiven Verhaltens von Grenzflächen in Metalllegierungen. Dissertation, Universität Bonn (2007)

  24. Marsden J., Hughes T.: Mathematical Foundations of Elasticity. Dover Publications Inc., New York (1993)

    Google Scholar 

  25. Michell, A.: LVIII. The limits of economy of material in frame-structures. Philosophical Magazine Series 6 8, 47, 589–597 (1904)

  26. Nocedal J., Wright S.J.: Numerical Optimization. Springer Series in Operations Research, Berlin (1999)

    Book  MATH  Google Scholar 

  27. Penzler P., Rumpf M., Wirth B.: A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: COCV 18(1), 229–258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pflug G.C., Römisch W.: Modeling, Measuring and Managing Risk. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  29. Schultz R., Tiedemann S.: Conditional value-at-risk in stochastic programs with mixed-integer recourse. Math. Program. 105(2–3), 365–386 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shapiro A., Dentcheva D., Ruszczyński A.: Lectures on Stochastic Programming. SIAM-MPS, Philadelphia (2009)

    Book  MATH  Google Scholar 

  31. Shewchuk J.: Triangle: engineering a 2d quality mesh generator and delaunay triangulator. Appl. Comput. Geom. Towards Geom. Eng. 1148, 203–222 (1996)

    Article  Google Scholar 

  32. Shewchuk J.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory Appl. 22, 21–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sokołowski J., Zolésio J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  34. Suzuki K., Kikuchi N.: A homogenization method for shape and topology optimization. Comput. Methods Appl. Mech. Eng. 93(3), 291–318 (1991)

    Article  MATH  Google Scholar 

  35. Wächter, A.: An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering. Phd thesis, Carnegie Mellon University (2002)

  36. Wächter A., Biegler L.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhuang C., Xiong Z., Ding H.: A level set method for topology optimization of heat conduction problem under multiple load cases. Comput. Methods Appl. Mech. Eng. 196, 1074–1084 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Schultz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geihe, B., Lenz, M., Rumpf, M. et al. Risk averse elastic shape optimization with parametrized fine scale geometry. Math. Program. 141, 383–403 (2013). https://doi.org/10.1007/s10107-012-0531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0531-1

Mathematics Subject Classification

Navigation